楼主: AIworld
720 0

Combining psychological models with machine learning to better predict peop.. [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1434
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2018-1-24 23:29:59 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:Creating agents that proficiently interact with people is critical for many applications. Towards creating these agents, models are needed that effectively predict people’s decisions in a variety of problems. To date, two approaches have been suggested to generally describe people’s decision behavior. One approach creates a-priori predictions about people’s behavior, either based on theoretical rational behavior or based on psychological models, including bounded rationality. A second type of approach focuses on creating models based exclusively on observations of people’s behavior. At the forefront of these types of methods are various machine learning algorithms.This paper explores how these two approaches can be compared and combined in different types of domains. In relatively simple domains, both psychological models and machine learning yield clear prediction models with nearly identical results. In more complex domains, the exact action predicted by psychological models is not even clear, and machine learning models are even less accurate. Nonetheless, we present a novel approach of creating hybrid methods that incorporate features from psychological models in conjunction with machine learning in order to create significantly improved models for predicting people’s decisions. To demonstrate these claims, we present an overview of previous and new results, taken from representative domains ranging from a relatively simple optimization problem and complex domains such as negotiation and coordination without communication.

原文链接:http://link.springer.com/article/10.1007/s11229-012-0182-z

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:psychologic combining Learning Logical predict

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-8 23:31