楼主: AIworld
490 0

语义词特征提取及其在维吾尔文文本分类中的应用 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1363
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2018-1-28 00:39:59 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:基于机器学习的文本分类中,维吾尔文传统分词方法表现出非常明显的不足和局限性.该文使用另外一种维吾尔文自动分词方法dme-TS.dme-TS中,不再以词间空格作为切分标记提取词特征,而是用一种组合统计量(dme)来度量文本中相邻单词之间的关联程度,并以dme度量的弱关联的词间位置作为切分点,提取对学习算法真正有意义的语义词特征.实验结果表明,用dme-TS提取文本特征可以降低特征空间的维度,同时也能有效的提高传统以单词为特征的分类算法的性能.http://www.cqvip.com//QK/96983X/201404/662124119.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:维吾尔 cqvip HTML HTTP 大家共享 维吾尔文分词 词特征 语义词特征 文本分类

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-21 17:46