楼主: a智多星
599 0

用于字符和数字识别的若干分类方法的比较研究:实验结果 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1485
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2018-2-10 01:00:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:分类问题是机器学习领域中的一个重要问题。给出了数字0-9的图象和26个英文大小写的图象格式的训练数据,对SVM、NB、RT、MLP、BOOST、Knearst 6种分类器的分类性能进行了测试和评估。实验结果表明,性能表现排名前3的分类器为SVM、NB、MLP。SVM具有更好的泛化能力,而NB和MLP对训练集的变化更为敏感;并且基于SVM方法的分类系统对字符和数字的识别精度达到94.2191%,高于现有文献的结果,系统识别性能具有更全和更准确的特点。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:比较研究 数字识别 boost 分类系统 near 机器学习 分类器 数据集 性能比较 识别精度

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-6 05:50