楼主: DL-er
548 0

一种新的改进AdaBoost弱分类器训练算法 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.0435
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38540 点
帖子
3853
精华
0
在线时间
813 小时
注册时间
2017-9-5
最后登录
2018-6-30

楼主
DL-er 在职认证  发表于 2018-2-10 09:40:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:AdaBoost是机器学习中比较流行的分类算法。通过研究弱分类器的特性,提出了两种新的弱分类器的阈值和偏置计算方法,二者可以使弱分类器识别率大于50%,从而保证在弱分类器达到一定数目的情况下,AdaBoost训练收敛。对两种阈值和偏置计算方法的仿真实验结果表明,在错分率降可接受的范围内,二者均使用较少的弱分类器便可获得高识别率的强分类器。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:adaboost boost 分类器 abo 计算方法 弱分类器 Adaboost算法 强分类器 错分率

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-24 13:17