楼主: DL-er
463 0

基于实体情感演化置信网的观点检测方法 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.0435
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38540 点
帖子
3853
精华
0
在线时间
813 小时
注册时间
2017-9-5
最后登录
2018-6-30

楼主
DL-er 在职认证  发表于 2018-2-10 19:40:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:社交网络评论文本存在评论主题缺失或情感特征缺失的问题,无法保证观点检测的性能,对此提出了建立实体情感演化贝叶斯置信网的方法。通过提取名词、动宾短语、动名词复合型定中结构短语三种域相关实体,提取域相关情感特征,用可变关联强度作为网络结构学习的约束条件,建立2阶依赖扩展贝叶斯网络,刻画实体、观点及情感特征的依赖关系,再通过实体及情感特征对观点极性进行推断。实验在自然语言处理与中文计算2016(NLP&CC2016)评测训练数据集的F值平均达70.8%,FAVOR和AGAINST两类正确率分别比仅包含情感特征的贝叶斯网络分类方法提高4.1个百分点和3.1个百分点。在5个Target评论测试集上的平均Micro-F为62.3%,优于该评测的平均水平。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:against Target 贝叶斯网络 again 训练数据集 观点检测 贝叶斯网络 域相关实体 网络结构学习 定中结构

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-21 09:41