楼主: AIworld
761 0

具有显著提高准确率和鲁棒性的基于极限学习机的流量分类 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1363
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2018-2-14 11:40:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:流量分类是网络管理员进行网络流量监控从而实现有效管理的重要手段。因此,准确地对流量进行分类具有重要意义。流量分类的两个重要评判标准是分类器的准确率和效率。本文提出了一种准确率高、鲁棒性强的流量分类方案,该方案第一次将最近几年提出的一种新的机器学习算法-极限学习机引入网络流量分类领域进行研究并进行针对性优化。同时也提出了一种自动生成流量分类器训练集的方案,使该系统对新的网络应用具有更强的自适应性和扩展性。本文使用VoIP和WWW流量作为流量分类的两个类别。实验结果表明该方案相比其他文献提出的C4.5,RandomForest,NaiveBayes和KNN具有更高的准确率、稳定性和鲁棒性。其中当测试数据集在训练数据集后当天收集时,本文分类器具有93%的高准确率,其他算法具有类似的准确率;当测试数据集在训练数据集后1月和2月收集时,本文分类器仍保持85%的高准确率,而其它算法的准确率只有大概60%左右,具有较大偏差无法应用到实际的流量分类系统中。实验结果表明,提出的流量分类方案具有准确率高,鲁棒性和扩展性强,可应用到流量分类实践中。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:鲁棒性 准确率 学习机 randomForest Forest 流量分类 机器学习 极限学习机 VOIP WWW

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-9 11:33