楼主: a智多星
846 0

基于三类特征融合的O-糖基化位点预测 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1414
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2018-2-18 12:40:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:糖基化是蛋白质翻译后的主要修饰,O-糖基化的固定模式未知,高精度识别O-糖基化位点是机器学习面临的挑战性问题.以迄今最大的人O-糖基化位点Steentoft数据集为基础,本文首次提出了基于位置的卡方差表特征χ^2pos,融合伪氨基酸序列进化信息Pse PSSM以及无方向的k间隔氨基酸对组分Undirected-CKSAAP表征序列,构建5个正负样本均衡的支持向量机分类器,经加权投票,独立测试准确率、Matthew相关系数及ROC曲线下面积,分别达到了89.62%、0.79、0.96,明显优于文献报道结果.χ^2pos、Pse PSSM与Undirected-CKSAAP三种特征的融合在蛋白质糖基化、磷酸化等位点预测中有广泛应用前景.

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Directed Matthew Direct ROC曲线 支持向量机 O-糖基化位点预测 卡方差表特征 伪氨基酸序列进化信息 无方向的k间隔氨基酸对组分 加权投票

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-31 13:46