楼主: AIworld
796 0

基于非对称相似度的文本聚类方法 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1434
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2018-2-18 18:40:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:文本聚类具有数据稀疏性的特点,常见的聚类方法采用基于距离的相异度,为了增强文档的区分特征,提出一种基于非对称相似度的方法,来度量文档对象之间的关联。定义了文本对象之间的非对称相似度度量。利用文本非对称相似度矩阵的稀疏特性,采用强连通构件的划分方法对文本对象进行聚类分析。并通过迭代的方法形成聚类结果的概念层次。实验结果表明:非对称相似度比距离相异度具有更高的准确率和更少的执行时间,当聚类结果簇数目达到较小时,准确率提高约为20%。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:聚类方法 文本聚类 相似度 大家共享 学术交流 机器学习 文字信息处理 文本聚类

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-9 12:30