楼主: 论文库
544 0

基于数据挖掘技术的网络入侵检测技术研究 [推广有奖]

  • 0关注
  • 13粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
5 个
通用积分
0.0363
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38440 点
帖子
3839
精华
0
在线时间
836 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
论文库 在职认证  发表于 2018-2-19 18:20:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:在此对基于数据挖掘技术的网络入侵检测技术进行研究。考虑到常规BP神经网络建立的网络入侵检测技术存在由于BP神经网络容易陷入最小值导致检测效率和准确率低下等问题,使用粒子群算法对BP神经网络模型进行优化,使用动态惯性权重系数以确定BP神经网络的参数,并将网络入侵流量特征与BP神经网络的参数组合并编码成一个粒子以实现网络入侵流量特征与BP神经网络的参数的同步选取。通过使用KDD CUP99数据库的入侵流量数据对使用该方法以及常规BP神经网络建立的检测模型进行训练和测试,结果表明,研究算法建立的检测模型具有更高的检测效率以及检测准确率。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:数据挖掘技术 数据挖掘 入侵检测 BP神经网络模型 BP神经网络 数据挖掘 BP神经网络 网络入侵检测 粒子群优化算法

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-20 23:12