没有问题阿
- . webuse tvsfpors
- . xtset school
- panel variable: school (unbalanced)
- . xtologit thk prethk cc##tv
- Fitting comparison model:
- Iteration 0: log likelihood = -2212.775
- Iteration 1: log likelihood = -2125.509
- Iteration 2: log likelihood = -2125.1034
- Iteration 3: log likelihood = -2125.1032
- Refining starting values:
- Grid node 0: log likelihood = -2136.2426
- Fitting full model:
- Iteration 0: log likelihood = -2136.2426 (not concave)
- Iteration 1: log likelihood = -2120.2577
- Iteration 2: log likelihood = -2119.7574
- Iteration 3: log likelihood = -2119.7428
- Iteration 4: log likelihood = -2119.7428
- Random-effects ordered logistic regression Number of obs = 1,600
- Group variable: school Number of groups = 28
- Random effects u_i ~ Gaussian Obs per group:
- min = 18
- avg = 57.1
- max = 137
- Integration method: mvaghermite Integration pts. = 12
- Wald chi2(4) = 128.06
- Log likelihood = -2119.7428 Prob > chi2 = 0.0000
- ------------------------------------------------------------------------------
- thk | Coef. Std. Err. z P>|z| [95% Conf. Interval]
- -------------+----------------------------------------------------------------
- prethk | .4032892 .03886 10.38 0.000 .327125 .4794534
- 1.cc | .9237904 .204074 4.53 0.000 .5238127 1.323768
- 1.tv | .2749937 .1977424 1.39 0.164 -.1125744 .6625618
- |
- cc#tv |
- 1 1 | -.4659256 .2845963 -1.64 0.102 -1.023724 .0918728
- -------------+----------------------------------------------------------------
- /cut1 | -.0884493 .1641062 -.4100916 .233193
- /cut2 | 1.153364 .165616 .8287625 1.477965
- /cut3 | 2.33195 .1734199 1.992053 2.671846
- -------------+----------------------------------------------------------------
- /sigma2_u | .0735112 .0383106 .0264695 .2041551
- ------------------------------------------------------------------------------
- LR test vs. ologit model: chibar2(01) = 10.72 Prob >= chibar2 = 0.0005
- . margins, dydx(*) predict(outcome(1))
- Average marginal effects Number of obs = 1,600
- Model VCE : OIM
- Expression : Pr(1.thk), predict(outcome(1))
- dy/dx w.r.t. : prethk 1.cc 1.tv
- ------------------------------------------------------------------------------
- | Delta-method
- | dy/dx Std. Err. z P>|z| [95% Conf. Interval]
- -------------+----------------------------------------------------------------
- prethk | -.0644851 .0064993 -9.92 0.000 -.0772236 -.0517467
- 1.cc | -.1097586 .0227242 -4.83 0.000 -.1542971 -.06522
- 1.tv | -.0145679 .0230157 -0.63 0.527 -.0596779 .0305421
- ------------------------------------------------------------------------------
- Note: dy/dx for factor levels is the discrete change from the base level.
- . margins, dydx(*) predict(outcome(2))
- Average marginal effects Number of obs = 1,600
- Model VCE : OIM
- Expression : Pr(2.thk), predict(outcome(2))
- dy/dx w.r.t. : prethk 1.cc 1.tv
- ------------------------------------------------------------------------------
- | Delta-method
- | dy/dx Std. Err. z P>|z| [95% Conf. Interval]
- -------------+----------------------------------------------------------------
- prethk | -.0266132 .0032342 -8.23 0.000 -.0329523 -.0202742
- 1.cc | -.0482728 .0106721 -4.52 0.000 -.0691898 -.0273559
- 1.tv | .0015273 .0099061 0.15 0.877 -.0178884 .0209429
- ------------------------------------------------------------------------------
- Note: dy/dx for factor levels is the discrete change from the base level.
- . margins, dydx(*) predict(outcome(3))
- Average marginal effects Number of obs = 1,600
- Model VCE : OIM
- Expression : Pr(3.thk), predict(outcome(3))
- dy/dx w.r.t. : prethk 1.cc 1.tv
- ------------------------------------------------------------------------------
- | Delta-method
- | dy/dx Std. Err. z P>|z| [95% Conf. Interval]
- -------------+----------------------------------------------------------------
- prethk | .0164846 .0029039 5.68 0.000 .010793 .0221762
- 1.cc | .0284101 .0073099 3.89 0.000 .0140829 .0427372
- 1.tv | .0086476 .007168 1.21 0.228 -.0054013 .0226965
- ------------------------------------------------------------------------------
- Note: dy/dx for factor levels is the discrete change from the base level.


雷达卡



京公网安备 11010802022788号







