楼主: 七带犰狳
4481 6

Principle Component Analysis (2010年将出版paper) [推广有奖]

  • 0关注
  • 1粉丝

已卖:509份资源

高中生

95%

还不是VIP/贵宾

-

威望
0
论坛币
5194 个
通用积分
0.8550
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
315 点
帖子
16
精华
0
在线时间
49 小时
注册时间
2008-12-8
最后登录
2020-2-17

楼主
七带犰狳 发表于 2009-12-4 18:44:24 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
abdi-wireCS-PCA2010-inpress.pdf (786.55 KB, 需要: 5 个论坛币)

【标题】Principle Component Analysis

【作者】Herv ́ Abdi & Lynne J. Williams

【出版日期】2010
【文件格式】PDF
【文件大小】786.6 KB
【页数】47
【资料类别】主因素分析
【扫描版还是影印版】文字版
【是否缺页】否
【内容简介】
Principal component analysis (pca) is a multivariate technique that
analyzes a data table in which observations are described by several inter-correlated
quantitative dependent variables. Its goal is to extract the important information
from the table, to represent it as a set of new orthogonal variables called principal
components, and to display the pattern of similarity of the observations and of
the variables as points in maps. The quality of the pca model can be evaluated
using cross-validation techniques such as the bootstrap and the jackknife. Pca
can be generalized as correspondence analysis (ca) in order to handle qualitative
variables and as multiple factor analysis (mfa) in order to handle heterogenous
sets of variables. Mathematically, pca depends upon the eigen-decomposition of
positive semi-definite matrices and upon the singular value decomposition (svd)
of rectangular matrices.

【目录】
1 Introduction
2 Prerequisite notions and notations
3 Goals of PCA
4 Interpreting PCA
4.1 Contribution of an observation to a component
4.2 Squared Cosine of a component with an observation
4.3 Loading: correlation of a component and a variable
5 Statistical inference: Evaluating the quality of the model
5.1 Fixed Effect Model
5.2 Random Effect Model
5.3 How many components?
5.4 Bootstraped confidence intervals
6 Rotation
6.1 Orthogonal rotation
6.2 Oblique Rotations
6.3 When and why using rotations
7 Examples
7.1 Correlation PCA
7.2 Covariance PCA
8 Some extensions of PCA
8.1 Correspondence Analysis
8.2 Multiple factor analysis
9 Conclusion
References
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:principle Component Analysis Analysi Analys Analysis principle Paper Component

沙发
qdwupeng(未真实交易用户) 发表于 2009-12-4 18:50:34
先顶一下!!!!!

藤椅
woshilshzu(未真实交易用户) 发表于 2009-12-7 15:41:22
谢谢,支持楼主

板凳
charlieword(真实交易用户) 发表于 2009-12-8 10:01:34
非常谢谢你的分享~

报纸
asdf7532(未真实交易用户) 发表于 2011-2-16 16:13:30

地板
xinwangan(真实交易用户) 发表于 2011-5-18 23:25:02
谢谢楼主与5楼

7
m8843620(未真实交易用户) 发表于 2011-5-27 13:12:42
謝謝樓主的分享

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2025-12-9 05:30