楼主: 风雨山晨
1358 0

[文献项目研究] 【独家发布】SingleCell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvir [推广有奖]

  • 8关注
  • 30粉丝

已卖:12835份资源

学科带头人

11%

还不是VIP/贵宾

-

TA的文库  其他...

投资金融-价值投资理念

财务报表&会计&税务&企业价

数据&免费资源&文献&软件

威望
0
论坛币
84374 个
通用积分
3613.8847
学术水平
40 点
热心指数
67 点
信用等级
38 点
经验
14330 点
帖子
908
精华
0
在线时间
1238 小时
注册时间
2013-2-28
最后登录
2023-8-5

楼主
风雨山晨 在职认证  发表于 2018-10-13 13:48:13 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
标题:Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment.
时间:2018-10-13 13:36:09
DOI:10.1016/j.cell.2018.05.060
PMID:29961579
作者:E Azizi;AJ Carr;G Plitas;AE Cornish;C Konopacki
摘要:Knowledge of immune cell phenotypes in the tumor microenvironment is essential for understanding mechanisms of cancer progression and immunotherapy response. We profiled 45,000 immune cells from eight breast carcinomas, as well as matche...
大小:17776 kb
页数:54 PAGES
目录:

  • CELL10248_proof.pdf

    • Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment
      • Introduction

      • Results
        • Single-Cell RNA-Seq of Breast Carcinoma-Resident Immune Cells
        • Integration of Data across Multiple Tumors
        • Breast Tumor Immune Cell Atlas Reveals Substantial Diversity in Cell States
        • Tissue Environment Affects the Diversity of Immune Phenotypic States
        • Immune Cells Undergo Phenotypic Expansion in the Tumor Microenvironment
        • Intratumoral T Cells Reside on Continuous Components of Variation
        • Intratumoral T Cell Clusters Are Characterized by Diverse Patterns of Environmental Signatures
        • Paired Single-Cell RNA and TCR Sequencing Reveals the Range of Activation States of Individual T Cell Clonotypes
        • T Cell States Are Shaped by Distinct TCR Usage
        • Activation and Differentiation Explain Variation in Intratumoral Myeloid Cells
      • Discussion
      • Supplemental Information
      • Acknowledgments
      • References

      • STAR★Methods
        • Key Resources Table
        • Contact for Reagent and Resource Sharing

        • Method Details
          • Sample Collection
          • Library Preparation for inDrop
          • RNA-Seq library preparation for 10x Genomics single-cell 5′ and VDJ sequencing
          • Construction of new barcode sets for inDrop
          • Increasing the throughput
          • Sequencing and fastq quality control
          • CyTOF sample preparation & data collection

        • Quantification and Statistical Analyses

          • Data preprocessing: SEQC
            • Overview
            • Fastq Demultiplexing
            • Substitution Error Rate Estimation
            • Pre-alignment filtering
            • Cell barcode correction
            • UMI validation
          • Annotation Construction
          • Alignment
          • Multi-Alignment Correction
          • Molecular Identifier Correction
          • Raw Digital Expression Matrix Construction

          • Cell Selection and Filtering
            • Size Selection
            • Coverage Selection
            • Filtration of dead or dying cells
            • Low-complexity cell filtration
          • Information Storage & Run Time
          • Data Quality Analysis of Breast Leukocytes
          • Library Consistency and Quality Control
          • Individual Sample Normalization and Clustering
          • Cluster Cell Type Annotation
          • Gene Signature Summarization Across Patients
          • Gene Signatures for Cluster Annotation and Analysis

          • Biscuit Clustering and Normalization for Merging Samples
            • Summary of Biscuit model
            • Biscuit Implementation
          • Entropy Metric to Evaluate Batch Effect Correction
          • Quantification of Cell Type Enrichment in Tissues
          • Creating a Global Immune Atlas using Biscuit
          • Cluster Robustness
          • Mixing of Samples in Clusters
          • Distances between Clusters
          • Contribution of Covariance in Defining Clusters
          • Defining Phenotypic Volume
          • Diffusion Component Analysis
          • Significance of Differences in Covariances in Raw Data
          • Comparison of Treg clusters to previous studies
          • Continuity of Cells along Components
          • Differences across patients
          • Preprocessing of paired 5′ scRNA-seq and TCR-seq data from 10x
          • Analysis of 10x Genomics paired TCR and scRNA sequencing data
          • Evaluation of the role of TCR diversity in driving a continuous spectrum of T cell activation
          • Evaluation of the role of TCR repertoire in explaining phenotypic states in T cells
          • CyTOF Data Processing and Analysis
        • Data and Software Availability




本页内


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Phenotype Diverse SINGLE immune breast

SingleCell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment.pdf
下载链接: https://bbs.pinggu.org/a-2593380.html

17.36 MB

需要: 2 个论坛币  [购买]

SingleCell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment(xuebalib.com)

已有 1 人评分经验 论坛币 收起 理由
jlwjlwjlw + 100 + 20 奖励积极上传好的资料

总评分: 经验 + 100  论坛币 + 20   查看全部评分

本帖被以下文库推荐

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-8 04:57