楼主: igs816
6495 33

[书籍介绍] Hands-On Ensemble Learning with R (PDF) [推广有奖]

已卖:261230份资源

泰斗

6%

还不是VIP/贵宾

-

威望
9
论坛币
1762889 个
通用积分
20526.2463
学术水平
2754 点
热心指数
3477 点
信用等级
2565 点
经验
485149 点
帖子
5457
精华
52
在线时间
3907 小时
注册时间
2007-8-6
最后登录
2025-12-25

高级学术勋章 特级学术勋章 高级信用勋章 特级信用勋章 高级热心勋章 特级热心勋章

楼主
igs816 在职认证  发表于 2018-10-29 14:19:34 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
M0Qqeyw7Q7IEKk4KijeZUADMv8WfpYec.png
by Prabhanjan Narayanachar Tattar
English | 2018 | ISBN: 1788624149 | 376 Pages | PDF | 7.35 MB
Ensemble techniques are used for combining two or more similar or dissimilar machine learning algorithms to create a stronger model. Such a model delivers superior prediction power and can give your datasets a boost in accuracy.

begins with the important statistical resampling methods. You will then walk through the central trilogy of ensemble techniques – bagging, random forest, and boosting – then you'll learn how they can be used to provide greater accuracy on large datasets using popular R packages. You will learn how to combine model predictions using different machine learning algorithms to build ensemble models. In addition to this, you will explore how to improve the performance of your ensemble models.

By the end of this book, you will have learned how machine learning algorithms can be combined to reduce common problems and build simple efficient ensemble models with the help of real-world examples.

What you will learn:

Carry out an essential review of re-sampling methods, bootstrap, and jackknife
Explore the key ensemble methods: bagging, random forests, and boosting
Use multiple algorithms to make strong predictive models
Enjoy a comprehensive treatment of boosting methods
Supplement methods with statistical tests, such as ROC
Walk through data structures in classification, regression, survival, and time series data
Use the supplied R code to implement ensemble methods
Learn stacking method to combine heterogeneous machine learning models

This book is for you if you are a data scientist or machine learning developer who wants to implement machine learning techniques by building ensemble models with the power of R. You will learn how to combine different machine learning algorithms to perform efficient data processing. Basic knowledge of machine learning techniques and programming knowledge of R would be an added advantage.

本帖隐藏的内容

Hands-On Ensemble Learning with R.pdf (7.35 MB, 需要: 10 个论坛币)



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Learning earning Hands Learn ning

已有 1 人评分经验 论坛币 学术水平 热心指数 信用等级 收起 理由
dxystata + 100 + 20 + 2 + 2 + 2 奖励积极上传好的资料

总评分: 经验 + 100  论坛币 + 20  学术水平 + 2  热心指数 + 2  信用等级 + 2   查看全部评分

本帖被以下文库推荐

沙发
peterxu1969(真实交易用户) 发表于 2018-10-29 14:34:14
thanks for giving

藤椅
duoduoduo(真实交易用户) 在职认证  发表于 2018-10-29 14:34:40
有点意思啊
这个内容

板凳
dxystata(未真实交易用户) 发表于 2018-10-29 14:35:57
谢谢分享!

报纸
陈信研究员(真实交易用户) 发表于 2018-10-29 14:52:12
谢谢分享好书

地板
20115326(真实交易用户) 学生认证  发表于 2018-10-29 15:34:58
好书,学习了

7
sqy(真实交易用户) 发表于 2018-10-29 16:48:00
Hands-On Ensemble Learning with R

8
shgby(真实交易用户) 发表于 2018-10-29 17:06:51 来自手机
Hands-On Ensemble Learning with R

9
summers1985(真实交易用户) 发表于 2018-10-29 19:52:00
感谢分享。

10
托茨卡纳(真实交易用户) 发表于 2018-10-29 20:27:53
集成学习集大成

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2025-12-26 00:16