| group | age | gender | w1_L23 | w2_L23 | w3_L23 | w4_L23 | w9_L23 | w10_L23 | w11_L23 | w12_L23 | w13_L23 | w14_L23 | w15_L23 | w16_L23 |
1 | 39 | 2 | 0.00048934 | 0.00048125 | 0.00040931 | 0.0004255 | 0.00020593 | 0.00045425 | 0.00056187 | 0.00050043 | 0.00054251 | 0.00049149 | 0.00048999 | 0.00056272 |
1 | 38 | 2 | 0.00048676 | 0.00044408 | 0.0004069 | 0.00040205 | 0.00025213 | 0.00046608 | 0.00055177 | 0.00051316 | 0.00055771 | 0.00050599 | 0.00051824 | 0.00056767 |
1 | 46 | 2 | 0.00055349 | 0.00052201 | 0.00045777 | 0.00044832 | 0.00027044 | 0.00046693 | 0.00063774 | 0.00056754 | 0.00062244 | 0.00053948 | 0.00055979 | 0.00059962 |
1 | 50 | 2 | 0.00052916 | 0.00049142 | 0.00042397 | 0.00042213 | 0.00024717 | 0.00051128 | 0.000604 | 0.00060899 | 0.00056069 | 0.00061936 | 0.00050899 | 0.00057253 |
1 | 35 | 2 | 0.00052933 | 0.00047794 | 0.00043655 | 0.00043347 | 0.00026902 | 0.0004713 | 0.00055875 | 0.00050828 | 0.00052225 | 0.00049025 | 0.00054317 | 0.00052335 |
1 | 46 | 2 | 0.00058642 | 0.00049027 | 0.00043232 | 0.00043498 | 0.00022233 | 0.00052598 | 0.00055477 | 0.00055934 | 0.00053926 | 0.00048554 | 0.00054042 | 0.00062385 |
1 | 49 | 2 | 0.00053186 | 0.00051969 | 0.00047144 | 0.00047615 | 0.00025114 | 0.00052077 | 0.00058964 | 0.00053496 | 0.00056103 | 0.0005329 | 0.00053276 | 0.00054893 |
1 | 23 | 2 | 0.00054093 | 0.00051823 | 0.00043891 | 0.00043495 | 0.00025734 | 0.00045432 | 0.00053053 | 0.00050735 | 0.00053407 | 0.00049193 | 0.00050876 | 0.00059122 |
1 | 38 | 2 | 0.00053369 | 0.00051097 | 0.00043166 | 0.00044269 | 0.00025567 | 0.00049064 | 0.00060453 | 0.00053866 | 0.00056756 | 0.00048999 | 0.00051148 | 0.00061892 |
1 | 17 | 2 | 0.00055267 | 0.0005759 | 0.0004726 | 0.00045626 | 0.00019977 | 0.00048307 | 0.00058845 | 0.00050955 | 0.0005923 | 0.00048274 | 0.00057332 | 0.00058334 |
1 | 9 | 2 | 0.0005781 | 0.0005417 | 0.0004712 | 0.0004525 | 0.0001963 | 0.0005268 | 0.000612 | 0.0005141 | 0.0006014 | 0.0005291 | 0.0005918 | 0.0006853 |
2 | 23 | 2 | 0.00048296 | 0.00046872 | 0.00041709 | 0.00043736 | 0.0001885 | 0.00043021 | 0.00051847 | 0.00051246 | 0.00055395 | 0.00053122 | 0.00055429 | 0.00062054 |
2 | 22 | 2 | 0.00047386 | 0.00042435 | 0.00042383 | 0.0004135 | 0.00019926 | 0.00044278 | 0.00050714 | 0.00045647 | 0.00049887 | 0.00045949 | 0.00046617 | 0.00051184 |
2 | 22 | 2 | 0.00051399 | 0.0004793 | 0.00041779 | 0.00043556 | 0.00022258 | 0.00048229 | 0.00058604 | 0.00052352 | 0.00057912 | 0.00050811 | 0.00054008 | 0.00058465 |
2 | 21 | 2 | 0.00049093 | 0.00045711 | 0.00042329 | 0.0004207 | 0.0001663 | 0.00040567 | 0.00051277 | 0.00046372 | 0.00049682 | 0.00044605 | 0.00051226 | 0.00053261 |
2 | 38 | 2 | 0.00052341 | 0.00042068 | 0.00039733 | 0.00039069 | 0.00022618 | 0.00044605 | 0.00053764 | 0.00049907 | 0.00051528 | 0.00048091 | 0.00052887 | 0.00056241 |
2 | 44 | 2 | 0.00049896 | 0.00046445 | 0.00039754 | 0.00040291 | 0.00023695 | 0.00046161 | 0.00052311 | 0.0004755 | 0.00053215 | 0.0004758 | 0.00050695 | 0.0005711 |
2 | 44 | 2 | 0.00054377 | 0.00046438 | 0.00042202 | 0.00041536 | 0.0002126 | 0.00048062 | 0.00056036 | 0.00045846 | 0.00053625 | 0.00046581 | 0.0005078 | 0.00050837 |
2 | 43 | 2 | 0.00047567 | 0.00047745 | 0.00040075 | 0.00040218 | 0.00020707 | 0.00046934 | 0.00054347 | 0.00050797 | 0.00052715 | 0.00048344 | 0.00049775 | 0.00059841 |
2 | 26 | 2 | 0.00047333 | 0.000447 | 0.0003877 | 0.00039676 | 0.0002328 | 0.00040346 | 0.00053692 | 0.0004886 | 0.00050649 | 0.00048021 | 0.00051271 | 0.00057109 |
2 | 11 | 2 | 0.0004993 | 0.0004578 | 0.0003898 | 0.0003621 | 0.0002119 | 0.0004642 | 0.0005414 | 0.0005162 | 0.0005151 | 0.0005288 | 0.0005024 | 0.0005342 |
我编写的脚本如下
<code>
clear
clc
%[num,txt,raw] = xlsread(___) returns the numeric data in array num,the text fields in cell array txt, and the unprocessed data (numbers and text) in cell array raw
[num,txt,raw] = xlsread('E:\LHON_DTI_bydinghao\FA_mask\tbss_lmm\pcorr\nc_cr_regree_robust.xls');% the data is extracted from fa907.xls
% get the type of variable out into different matrix
%get the group
group=num(:,1);
age=num(:,2);
gender=num(:,3);
title_num=txt(:,2:28);
l23=num(:,4:15);
% FA=num(:,16:27);
%regress out age and sex for fa
statsvalue=zeros(3,12);
for i=1:12
%这一块的程序不会编,
%should use this command https://ww2.mathworks.cn/help/st ... cal-covariates.html
%fit = fitlm(group,fa(:,i)); %but fitlm doesn't exist.
[b,dev,stats] = glmfit(group,[l23(:,i)],'normal');
% statsvalue(1,i)=h;
% statsvalue(2,i)=t;
% statsvalue(3,i)=p;
end
% [pthr,pcor,padj] = fdr(statsvalue(3,:),0.05);
% new=[statsvalue,padj];</code>
其实我也可以使用stata的命令regress w1_L23 group c.age gender来做,但是那样的缺点是我需要反复拷贝t值和p值,而且还要做一个多重校正,如果使用matlab就可以一步到位.但是fitlm程序居然没有,而glmfit给出了两组各自的回归系数,但是没有进行进一步的统计.各位老师能否指导一下.


雷达卡



京公网安备 11010802022788号







