六、港珠澳跨海大桥正式通车
2018年10月24日,世界上最长的跨海大桥港珠澳大桥正式通车。

珠港澳大桥主要用于连接香港、珠海和澳门,是一项巨大的桥梁和隧道工程。大桥总长度约55公里,横跨零丁洋,是世界上最长的跨海大桥。
大桥于2009年12月15日动工建设,2017年7月7日主体工程全线贯通,2018年2月6日,大桥主体完成验收,2018年10月24日正通车。
大桥的建造包括海上建设桥梁和海底建设隧道两项工程,建设海底隧道因为此处毗邻香港国际机场,飞机起降时建筑物的高度需要限制,部分空域不适合建设大型桥塔,而且海上航运繁忙,必须为货轮提供航行通道。
同时大桥的建设充分考虑了对环境的影响,尽可能保持周边原有的生态环境不改变。
大桥建成以后将会联通整个粤港澳大湾区,整体融合广东、香港和澳门,形成一个庞大的超级城市,不仅使得三地的人员来往交流更加方便快捷,而且可以通过香港澳门吸引更多的国际资金来内地投资。
七、中国医疗器械登上权威刊物《柳叶刀》
2018年9月4日,全球医学界权威学术刊物《柳叶刀》刊登了上海微创医疗器械有限公司自主研发的火鹰支架在欧洲大规模临床试验的研究结果,称该研究破解了困扰世界心血管介入领域10多年的重大难题,这是《柳叶刀》创刊近200年来首次出现中国医疗器械的身影。

在心脏支架领域,药物的承载是一个困扰专业人士10多年的难题。
目前,国内外传统主流心脏支架都是在金属支架表面涂上细胞抑制剂,才能使血管持续通畅,降低血管再狭窄的发生率。
但是药物支架表面的涂层在血管装载过程中如果遇到像钙化等复杂病变时,容易脱落、破损,会影响治疗效果,更可能加剧新的血栓的形成;并且药物的承载量难以控制,装少了容易在达到病变区之前过早损耗,装多了则容易过犹不及,对人体造成负担。
经过反复设计和比较,火鹰研发团队历时15年,选择并达成了技术上最难实现的一种方案——微槽包裹药物。即在金属支架表面用激光刻槽,再把药物灌入槽内。
和传统技术的区别在于,刻槽可防止涂层在输送过程中脱落,药物不会流失,且药物抵达血管病变区后,能通过固定的槽位精准释放,大幅提高了有效性,也避免了浪费。解决了包括血管修复慢,患者服用双抗药物时间长等一系列心脏支架领域的国际难题。
八、中国电科38所发布“魂芯二号A”芯片:实际运算性能业界同类最强
2018年4月23日,中国电科38所发布了实际运算性能在业界同类产品最强的数字信号处理器——“魂芯二号A”。

该芯片由38所完全自主设计,在一秒钟内能完成千亿次浮点操作运算,单核性能超过当前国际市场上同类芯片性能4倍。
魂芯二号A”研发历时6年,突破了控制器设计等多个技术难题,获得国家技术发明专利、软件著作权等科技成果30余项;拥有当前业界性能最强的DSP核,实现了对国内外同类产品性能指标的超越。
相对于“魂芯一号”,“魂芯二号A”性能提升了6倍,通过单核变多核、扩展运算部件、升级指令系统等手段,使器件进行千亿次浮点运算同时,具有相对良好的应用环境和调试手段;单核实现1024浮点FFT (快速傅里叶变换)运算仅需1.6微秒,运算效能比德州仪器公司TMS320C6678高3倍,实际性能为其1.7倍,器件数据吞吐率达每秒240Gb。
高性能芯片被誉为 “工业粮草”,代表了一个国家信息技术水平。一直以来,我国在高性能数字信号处理器(DSP)方面始终依赖进口。
2012年,38所推出我国自主研发的首款实用型高性能浮点通用DSP芯片——“魂芯一号”,性能高于同期市场同类DSP芯片4~6倍,并成为我国首款广泛应用于国防科技装备的高端自主数字信号处理器。作为通用DSP处理器,“魂芯二号A”以后将广泛运用于雷达、电子对抗、通信、图像处理、医疗电子、工业机器人等高密集计算领域。
九、我国建成首台散裂中子源
2018年3月25日,我国“十一五”国家重大科技基础设施——中国散裂中子源已按期、高质量完成了全部工程建设任务。

散裂中子源实际上是一种大型试验装置,其原理就是用高能强流质子加速器产生质子束轰击重元素靶(如钨或铀),当一个高能质子打到重原子核上时,一些中子被轰击出来,产生散裂现象。简单说,就是将一个垒球投到装满球的筐中,其他的球受到撞击会从筐子里面蹦出来,这些蹦出来的球就相当于被轰出来的中子。
散裂中子源这种装置就像显微镜一样,可以研究物质内部的微观结构。
打个比方来说,我们前面有一张看不见的网,我们不断地向其扔出很多玻璃弹珠,弹珠有穿网而过,有的打在网上,弹向不同角度。如果我们将这些弹珠的运动轨迹记录下来,就能大致推测网的形状。只要弹珠足够多,这张网的形状就可以更加精确的描绘,甚至可以推断其材质。
根据这种特性可以利用散裂中子源看穿材料微观结构,检查材料“内伤”,定向治疗癌细胞等等,该装置在材料学,生命学,医学等多个领域有着重大应用。
十、我国科学家实现全球首例人类肺脏再生
2018年2月8日,同济大学左为教授团队宣布完成肺干细胞移植人体临床试验。标志着中国完成了全球第一例成体肺干细胞移植,实现了首次肺脏再生。

目前中国处于各种肺部疾病高发状态,肺组织一旦遭到破坏而发生纤维化,病情往往会持续恶化无法逆转,而传统的治疗方法只能减缓这种纤维化的进程,延缓病情。
左为教授发明的肺干细胞扩增和移植技术,利用从肺部支气管处取出来的干细胞再生肺部组织,使肺部纤维化的区域“重生”,修复肺部病理损伤组织。
左为教授的团队前期通过在小鼠肺部进行试验验证了这种技术的可行性。之后通过对肺病患者的临床治疗,使得患者的肺功能好转,达到了传统治疗方法无法达到的效果。这标志着人体自身内脏器官的再生正逐步从实验室走向临床。
左为教授的团队一共展开了超过80例临床肺细胞移植,涉及支气管、慢阻肺和间歇性肺病等不同病种。并且与多家干细胞备案医疗机构开展合作研究。





雷达卡




京公网安备 11010802022788号







