最近几年,智能制造成为学术界和企业界共同关注的热点问题。尽管如此,人们对智能制造概念本身的认识却未达成共识,并存在诸多模糊的认识。企业界的推进过程更是遇到多方面的困惑。本文针对这些问题,进行分析和讨论。
智能制造的概念
汉语中的“智能制造”对应两种英文表述,分别是smart manufacture 和 intelligent manufacture。其中,intelligent manufacture的提法出现更早,但多数场合指的却是smart manufacture。在中国工程院《中国智能制造发展战略研究报告》中,把智能制造分成 3种递进发展的范式:数字化制造、数字化网络化制造和新一代智能制造。smart manufacture主要对应数字化网络化制造,而intelligent manufacture则对应新一代智能制造。
在党的十九大报告中明确指出,要促进工业互联网的应用。重点是推进数字化网络化制造。因此,有必要对 smart manufacture 进行进一步解释。其字面含义是赋予企业快速响应内部和外部变化的能力。快速响应之所以重要,是因为市场竞争日趋激烈,使得响应速度越来越重要。
从目标上看,smart manufacture 与 flexible manufacturing(柔性制造)相似。但从手段上看,前者侧重用ICT(信息通信技术)的应用。与传统信息化相比往往需要对设备、组织、流程、工作方式、商业模式等方面的改造,而不是单纯的 ICT技术应用。因此,smart manufacture 往往被理解为 ICT 技术与制造业的“深度融合”。一般来说,智能制造不仅涉及制造相关的过程,智能服务和智能产品也常常被纳入智能制造的范畴。
可以用 4个基本要点理解上述智能制造的内在逻辑:ICT技术的深入应用是智能制造的出发点;价值创造是智能制造的目的和归宿;快速响应变化是智能制造的外部特征;协同、共享和重用是智能制造进行价值创造的内在机制。
1)强调“ICT 技术的深入应用是智能制造的出发点”,是因为智能制造的历史机遇是 ICT技术的发展带来的,要避免把智能化与传统的自动化、信息化混淆起来,从而忽视真正的智能化工作、丧失历史的机遇。智能化相关思想并不是现在才有的,但只有在ICT技术高度发达的条件下,过去的设想才能具备技术和经济可行性。
2)提出“价值创造是智能制造的目的和归宿”的背景,是反对为技术而技术、盲目采用先进而无用的东西。这种担忧不是“杞人忧天”,而是已经有了蔓延的可能。为此,智能制造必须以服务于企业真实的业务需求。很多企业对智能化的需求是隐含的。推进智能制造往往需要企业进行转型升级,改变生产经营方式,才能找到合适的场景,以便于创造价值。这就是ICT技术与工业“深度融合”的含义。
3)“快速响应变化是智能制造的外部特征”。随着的竞争不断加强,快速响应的重要性越来越大。例如,在手机、汽车等行业,快速响应的价值体现在新产品上市的速度上。推出新一代产品的快慢,很大程度上决定了企业的盈利情况。在另外一些对原料价格敏感的行业,快速响应供应链变化的能力决定企业的盈亏。所以,智能制造最重要的作用之一就是加快响应速度。
4)“协同、共享和重用是智能制造进行价值创造的内在机制”。ICT技术能够显著促进人与人、机器与机器、人与机器、企业与企业、部门与部门之间的协同。减少时间上的耽搁、减少界面上的失误。还可以通过对物质、人、知识或信息的共享来降低成本、提高效率和质量。在智能制造时代,知识的重用变得越来越重要。例如,通过模块的重用,可以减少研发过程不必要的时间和资金投入,并有利于提高质量、降低成本,提高经济性,并支撑快速响应。
智能制造有很多典型的模式或体系,其中最著名的是德国工业4.0和美国工业互联网。
智能制造与人工智能、自动化
随着人工智能技术的迅速发展,图像、语音识别等技术开始广泛用于生产制造的过程,帮助人类从枯燥、恶劣的工作环境中解放出来,意义重大。故而,有人认为“智能制造就是人工智能在制造业的应用”。但这个观点并不准确、且非常容易对公众产生误导。
人工智能传统上有 3个学派。符号主义又称计算机学派,侧重模拟大脑的逻辑推理功能;联接主义又称人工神经元学派,侧重模拟脑的结构,擅长知识的学习;行为主义又称控制论学派,侧重模拟脑体的协同、追求知行合一。在很多学术场合下,人工智能专指前面两个学派。以深度学习为代表的所谓“新一代人工智能”就是联接学派发展而来。
然而,与智能制造联系最紧密的应是控制论学派。控制论的主要思想可追溯到 20 世纪 40 年代维纳的《控制论》。维纳研究了动物和机器的差别,认为动物区别于机器的一个显著特征是对信息的感知和处理;动物能随时感知外部环境的各种变化而调整自己的行为,而不像多数机器那样只按既定的逻辑顺序执行。这一理论的实质就是主张将感知、决策和执行3个要素统一起来。
维纳的思想随着工具手段的发展促进着理论和实践的进步。“感知”和“决策”本质上是针对信息的,而“执行”最终是针对物质实体的。所以,两者的统一需要将信息和物理联系起来。这种思想在瓦特蒸汽机中就有体现。但是,蒸汽机的感知和计算,是用机械装置这种物理实体实现的。这种实现方法非常巧妙,却不具一般性、难以推广。这种约束直到弱电的出现,信息的感知和计算可以用弱电来实现,并转化成强电来驱动物理实体。于是,依靠“电”这种手段,把信息领域和物理领域联系了起来。控制论就是在这种背景下产生的。控制理论中,经典的模型是用传递函数、状态方程描述的。某种意义上说,这种模型的广泛使用与最初的技术手段有关,控制器往往是用电感、电容等电子元件搭建的。这种模型虽然简单,但应用上还是有局限性的。到了计算机时代,能描述的数学模型大大拓展、具有了一般性。后来,互联网的应用又使得人们对资源的可观、可控能力大大提升,进而把人类带入了智能制造的时代。因此,智能化和自动化的理论一脉相承,但实现手段有极大的改善。
从经济学上看,可观、可控能力的提升,导致资源配置能力的加强、进而导致经济性的改善。具体表现为,传统自动化往往局限于较小空间范围内,而智能制造能够实现跨区域、跨部门乃至跨企业的大尺度控制和优化。例如,上海优也信息科技有限公司在山东某钢厂的工作,实现了煤气产生方、使用方和缓冲方的实时优化调控。技术原理虽然容易理解,但相关设备分布在几平方千米的范围内,离开互联网的支撑,是不具备技术可行性的。所以,ICT基础技术条件的改变是推进自动化走向智能化的关键因素。
相比而言,自动化偏重代替人的体力劳动,而智能化则偏重代替人的脑力劳动,也就是决策。这也是两者的一个重要区别。因此,知识的数字化、模型化、软件化,促进机器的认知和决策能力,是智能制造的关键技术。
智能制造的典型流派:工业4.0
工业 4.0 的概念是德国工程院 2013 年提出的。其标志性特征可以归纳为“具备个性化定制生产能力的自动化流水线”。这个特征是理解工业 4.0的一把钥匙,能把技术的经济性和对技术需求联系起来,从而帮助人们理解工业 4.0 是如何把技术可行性和经济可行性统一起来的。从技术上看,工业 4.0的生产模式继承了流水线低成本、高效率的优点,又克服了流水线在产品变化时灵活性差的缺点。从经济上看,满足个性化需求可以获得更好的经济价值。可以设想,如果用传统生产方式进行定制化生产,产品设计、工艺设计、生产组织的时间和经济效益都难以保证、甚至不具备经济性。
工业 4.0 的生产方式对生产组织、销售采购、设计服务等业务造成极大的挑战。而智能化的特长,恰恰适合应对这些挑战。例如,通过对模块、工艺知识的重用,可以显著减少研发和试生产的时间;通过信息的横向集成应对销售采购和供应链方面的挑战;通过纵向集成应对生产组织管理的挑战;通过端到端集成应对设计服务业务上的挑战。再如,个性化生产导致生产组织和调度非常复杂,需要采用赛博物理系统(CPS)技术才能解决。
推进工业 4.0是个长期的过程,企业要根据自身的需求推动,不必被概念所束缚。工厂的自动化、定制化的程度可高可低,关键是有利于促进企业的竞争力。事实上,由于行业和地区的发展不均衡,自动化、定制化程度和难度都有显著差别。例如,在钢铁行业,由于自动化程度高、产品切换简单、物料跟踪相对容易,先进企业在几十年前就具备了定制化生产的能力。但是,在某些离散制造业,产品切换非常复杂,甚至要进行流水线的改造。在这些行业,推动自动化的难度都很大,智能化就更难了。事实上,德国提出工业 4.0 的背景主要针对这些相对困难的离散制造业。在离散制造业,数字化相关技术的发展,能将过去困难的问题变得容易。
有观点认为,工业 4.0 是工业 3.0 发展成熟之后的结果。现在看来,这种观点是片面的,可能会阻碍人们有益的探索。事实上,红领制衣是在人工操作的流水线上从事个性化定制,从工业 2.0 向 4.0 进军。西门子成都工厂号称“工业 3.8”工厂,能够在流水线上切换产品类型,但工厂的人工操作同样也很多。应该注意到,虽然两个企业都有大量的人工操作,但车间内的物流配送都是自动化的。由于定制化生产的物流很复杂,没有自动化、智能化的支撑,管理上就很难搞好。这种模式有一定的代表性,值得很多企业学习和关注。
有人认为,工业 4.0 发展到一定程度,必然取代工业 1.0~3.0。但工业 4.0 只是工业技术发展到一定程度的标志性成果,并不意味着所有企业都采用工业4.0的生产方式。其实,发达国家的高端制造业,现在也并非完全处于工业 3.0 阶段,很多高端设备、奢侈品要靠手工制造。而且工业 1.0~4.0各有优势、会长期共存。所以,企业是否推进工业 4.0 的生产模式,关键要看经济上是否合算。
智能制造的典型流派:工业互联网
工业互联网是美国 GE公司在 2012年提出的概念,后来影响了美国乃至世界范围内的企业。相比之下,工业 4.0体系以车间的生产过程为核心,而工业互联网侧重更大范围的协同。
工业互联网思想在实践过程中产生。维修人员很早就发现,通过互联网远程诊断医疗设备的状态,可以显著提高工作效率、降低维修成本。后来有人把这样的想法用于飞机发动机状态的诊断和维护。类似案例促成了工业互联网思想的产生。故而,有人把设备的“预测式维护”当成工业互联网技术应用的标志性场景之一。工业互联网强调实时连接“智能机器”“高级分析”和“工作人员”3种要素。其中,智能机器是安装各种传感器、控制器和软件的机器;高级分析是包含各种专业领域知识的数据分析算法;工作人员是指通过互联网参与设计、操作、维护等工作的各类工作人员。
美国 GE公司意识到,工业互联网可以帮助制造企业向服务业延伸和转型。故而,GE公司试图借助这种潮流,通过帮助其他制造企业转型,实现 GE 公司自身从“制造企业”到“软件企业”的转型。GE公司著名的工业互联网平台 Predix就是在这种思想下产生的。但 GE在推动 Predix时有些操之过急,导致技术的投入产出比不合适,遇到了不少的麻烦。
智能制造的中国观点
“流水线上的个性化定制”和“设备预测式维护”常被看作工业4.0、工业互联网的“标签式特征”。然而,多数企业未必需要个性化定制、多数设备也未必能够做到预测式维护。这些问题给很多企业带来了困惑。面对这些困惑,需要更加深入的思考。


雷达卡




京公网安备 11010802022788号







