Treatment-effects model -- two-step estimates Number of obs = 2012
Wald chi2(16) = 6566.89
Prob > chi2 = 0.0000
------------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lnincome |
work_hours | .1364251 .0019359 70.47 0.000 .1326308 .1402195
homework | -.204924 .0339245 -6.04 0.000 -.2714149 -.1384331
gy | 1.4425 .1638876 8.80 0.000 1.121286 1.763714
zx | -.0240408 .2072328 -0.12 0.908 -.4302096 .3821281
dz | .7353449 .3613597 2.03 0.042 .0270929 1.443597
sx | .8869037 .7498048 1.18 0.237 -.5826868 2.356494
age | .3788979 .0839238 4.51 0.000 .2144102 .5433856
age2 | -.0038905 .0011934 -3.26 0.001 -.0062294 -.0015516
experience | -.0611817 .0308369 -1.98 0.047 -.1216209 -.0007425
hukou | .0758493 .1304975 0.58 0.561 -.1799212 .3316197
healthy | .0001312 .0488811 0.00 0.998 -.0956739 .0959364
is_party | .4020509 .2218493 1.81 0.070 -.0327656 .8368675
is_urban | .1050207 .1106477 0.95 0.343 -.1118448 .3218861
east | .5669382 .1519215 3.73 0.000 .2691775 .8646989
west | .0782284 .1377195 0.57 0.570 -.191697 .3481537
married | -2.156323 1.395477 -1.55 0.122 -4.891408 .5787615
_cons | -3.535827 1.661701 -2.13 0.033 -6.792701 -.278953
-------------+----------------------------------------------------------------
married |
sexratio | -.6389774 .1329911 -4.80 0.000 -.8996353 -.3783196
_cons | 1.465433 .1669089 8.78 0.000 1.138298 1.792569
-------------+----------------------------------------------------------------
hazard |
lambda | .6836395 .8193207 0.83 0.404 -.9221996 2.289479
-------------+----------------------------------------------------------------
rho | 0.29763
sigma | 2.2969336
------------------------------------------------------------------------------
Treatment-effects model -- MLE Number of obs = 2012
Wald chi2(16) = 9451.58
Log likelihood = -5565.3994 Prob > chi2 = 0.0000
------------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lnincome |
work_hours | .1341493 .0019053 70.41 0.000 .130415 .1378835
homework | -.1956767 .0330609 -5.92 0.000 -.2604749 -.1308785
gy | 1.443044 .1544777 9.34 0.000 1.140273 1.745815
zx | -.0094842 .2027641 -0.05 0.963 -.4068946 .3879262
dz | .6415914 .3507023 1.83 0.067 -.0457724 1.328955
sx | .7566702 .732382 1.03 0.302 -.6787722 2.192113
age | .3765648 .0802236 4.69 0.000 .2193295 .5338001
age2 | -.0040891 .0011425 -3.58 0.000 -.0063284 -.0018498
experience | -.0579928 .0300874 -1.93 0.054 -.1169631 .0009774
hukou | .086458 .1241153 0.70 0.486 -.1568035 .3297195
healthy | -.0025404 .0469484 -0.05 0.957 -.0945576 .0894769
is_party | .3105388 .2137358 1.45 0.146 -.1083756 .7294533
is_urban | .138437 .1063089 1.30 0.193 -.0699246 .3467986
east | .3806575 .1250654 3.04 0.002 .1355338 .6257811
west | .0492962 .128452 0.38 0.701 -.202465 .3010574
married | -4.88199 .246275 -19.82 0.000 -5.36468 -4.399299
_cons | -1.128096 1.215863 -0.93 0.354 -3.511143 1.254951
-------------+----------------------------------------------------------------
married |
sexratio | -.4594262 .1073585 -4.28 0.000 -.669845 -.2490074
_cons | 1.200576 .1370716 8.76 0.000 .9319205 1.469231
-------------+----------------------------------------------------------------
/athrho | 1.177027 .0752795 15.64 0.000 1.029482 1.324572
/lnsigma | 1.028869 .0256663 40.09 0.000 .9785642 1.079174
-------------+----------------------------------------------------------------
rho | .8265118 .0238544 .7737004 .8679164
sigma | 2.7979 .0718116 2.660633 2.942248
lambda | 2.312497 .1190334 2.079196 2.545799
------------------------------------------------------------------------------
LR test of indep. eqns. (rho = 0): chi2(1) = 59.59 Prob > chi2 = 0.0000
计量超小白一个,论文方向还没有任何创意,做的是婚姻对女性工资的影响,跟连玉君老师视频课程和陈强老师书中常举例的美国妇女88年工资的例子很像。跟着书上设定模型,选方法,可是做出来结果还是不懂得怎么去看。
这是我用的处理效应两步法做出的结果,p值为0.0000是不是表示内生性很强啊?
1.请问需要怎么解决这个问题?
2.另外陈强老师评价书中的例子,结果显示不存在内生性,却可能忽略了是否进入劳动力市场的内生选择,请问存在着两个问题需要怎么办?
3.我用的各省男女性别比例作为外生变量,可是结果却显示男女性别比例越高,女性越不可能结婚。这结果跟现实好像相差很大,是不是表示我的模型还是什么存在大的失误?
实在是很无助,求大家帮帮忙!


雷达卡



京公网安备 11010802022788号







