楼主: oliyiyi
1511 4

Bayesian workflow for model checking and model improvement [推广有奖]

版主

已卖:2996份资源

泰斗

1%

还不是VIP/贵宾

-

TA的文库  其他...

计量文库

威望
7
论坛币
66275 个
通用积分
31671.2767
学术水平
1454 点
热心指数
1573 点
信用等级
1364 点
经验
384134 点
帖子
9629
精华
66
在线时间
5508 小时
注册时间
2007-5-21
最后登录
2025-7-8

初级学术勋章 初级热心勋章 初级信用勋章 中级信用勋章 中级学术勋章 中级热心勋章 高级热心勋章 高级学术勋章 高级信用勋章 特级热心勋章 特级学术勋章 特级信用勋章

楼主
oliyiyi 发表于 2019-1-12 22:23:50 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

In Bayesian inference we make a sort of deal with the devil: we commit to a strong model, and from this we get strong inferences. But, as the saying goes, with great power comes great responsibility. We need to vigilantly check the fit of our models, following this up with model improvement. As a result, Bayesian workflow does not involve fitting just one model to data. We typically fit multiple models, including some models that we know are too simple (to get a sense of what is lost by not including certain features in our analysis) and others that we suspect are too complex (to get a sense of the boundaries of what we can learn given the resolution of the our available data).

Model checking consists of the following steps:

  • Simulate fake data. Specify sizes and values for all predictors in a model and choose a set of values for all model parameters and generate the corresponding data values <span id="MathJax-Element-6-Frame" class="mjx-chtml MathJax_CHTML" tabindex="0" data-mathml="y" role="presentation" style="-webkit-font-smoothing: antialiased; box-sizing: border-box; -webkit-tap-highlight-color: transparent; text-size-adjust: none; display: inline-table; line-height: 0; font-size: 25.92px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding-top: 1px; padding-bottom: 1px; position: relative;">yy.

  • Fit the model. Express the model in Stan, pass the simulated data into the program, and estimate the parameters.

  • Evaluate the fit. Compare the estimated parameters (or, more fully, the posterior distribution of the parameters) to their true values, which in this simulated-data scenario are known.



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:IMPROVEMENT Checking Bayesian workflow Improve

缺少币币的网友请访问有奖回帖集合
https://bbs.pinggu.org/thread-3990750-1-1.html

沙发
oliyiyi 发表于 2019-1-21 23:22:30

Be sure that your Stan programs ends in a blank line without any characters including spaces and comments.

In this Stan program, we let theta be a transformation of mu, eta, and tau instead of declaring theta in the parameters block, which allows the sampler will run more efficiently (see detailed explanation). We can prepare the data (which typically is a named list) in R with:

藤椅
oliyiyi 发表于 2019-1-22 16:58:17
The object fit, returned from function stan is an S4 object of class stanfit. Methods such as print, plot, and pairs are associated with the fitted result so we can use the following code to check out the results in fit. print provides a summary for the parameter of the model as well as the log-posterior with name lp__ (see the following example output). For more methods and details of class stanfit, see the help of class stanfit.

板凳
oliyiyi 发表于 2019-1-23 20:11:37
The object fit, returned from function stan is an S4 object of class stanfit. Methods such as print, plot, and pairs are associated with the fitted result so we can use the following code to check out the results in fit. print provides a summary for the parameter of the model as well as the log-posterior with name lp__ (see the following example output). For more methods and details of class stanfit, see the help of class stanfit.

报纸
wahahapinggu456 发表于 2020-6-14 19:57:43
good 08

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2026-1-9 23:18