```
- tsdata2 <- function(df){
-
- t.f <- as.data.frame(table(df$DATE_INHOSPITAL2)) %>% rename(whole =Freq)
- ## sex
- man.d <- df %>% filter(GENDER == 1)
- man.f <- as.data.frame(table(man.d$DATE_INHOSPITAL2)) %>% rename(man =Freq)
-
- woman.d <- df %>% filter(GENDER == 2)
- woman.f <- as.data.frame(table(woman.d$DATE_INHOSPITAL2)) %>% rename(woman =Freq)
-
- ## age 65
- agelo65.d <- df %>% filter(age_group65 == 1)
- agelo65.f <- as.data.frame(table(agelo65.d$DATE_INHOSPITAL2)) %>% rename(agelo65 =Freq)
-
- ageup65.d <- df %>% filter(age_group65 == 2)
- ageup65.f <- as.data.frame(table(ageup65.d$DATE_INHOSPITAL2)) %>% rename(ageupwith65 =Freq)
-
- ## age 10
- age10.1.d <- df %>% filter(age_group10 == 1)
- age10.1.d.f <- as.data.frame(table(age10.1.d$DATE_INHOSPITAL2)) %>% rename(agelo40 =Freq)
-
- age10.2.d <- df %>% filter(age_group10 == 2)
- age10.2.d.f <- as.data.frame(table(age10.2.d$DATE_INHOSPITAL2)) %>% rename(age41_50 =Freq)
-
- age10.3.d <- df %>% filter(age_group10 == 3)
- age10.3.d.f <- as.data.frame(table(age10.3.d$DATE_INHOSPITAL2)) %>% rename(age51_60 =Freq)
-
- age10.4.d <- df %>% filter(age_group10 == 4)
- age10.4.d.f <- as.data.frame(table(age10.4.d$DATE_INHOSPITAL2)) %>% rename(age61_70 =Freq)
-
- age10.5.d <- df %>% filter(age_group10 == 5)
- age10.5.d.f <- as.data.frame(table(age10.5.d$DATE_INHOSPITAL2)) %>% rename(age71_80 =Freq)
-
- age10.6.d <- df %>% filter(age_group10 == 6)
- age10.6.d.f <- as.data.frame(table(age10.6.d$DATE_INHOSPITAL2)) %>% rename(ageup80 =Freq)
-
- datebreaks<-seq(as.Date("2014-01-01"),as.Date("2018-12-31"),by="1 day")
-
- full <- data.frame(Var1 = as.character(datebreaks) )
-
-
- result <- full %>%
- left_join(t.f) %>%
- left_join(man.f) %>%
- left_join(woman.f) %>%
- left_join(agelo65.f) %>%
- left_join(ageup65.f) %>%
- left_join(age10.1.d.f) %>%
- left_join(age10.2.d.f) %>%
- left_join(age10.3.d.f) %>%
- left_join(age10.4.d.f) %>%
- left_join(age10.5.d.f) %>%
- left_join(age10.6.d.f) %>% replace(., is.na(.), 0)
-
- return(result)
- }
- list <- split(total,total$DISEASE_CODE1_2to3)
- test <- map(list,tsdata2)
运行结果是酱紫的。。
- test <- map(list,tsdata2)
- Joining, by = "Var1"
- Joining, by = "Var1"
- Joining, by = "Var1"
- Joining, by = "Var1"
- Joining, by = "Var1"
- Joining, by = "Var1"
- Error: `by` required, because the data sources have no common variables


雷达卡






我怎么能按照年龄分组和性别分组,分别分组统计啊,最后输出一个大的dataframe
京公网安备 11010802022788号







