楼主: xuehe
1592 2

Deep IV_A Flexible Approach for Counterfactual Prediction [推广有奖]

贵宾

已卖:14807份资源

学术权威

87%

还不是VIP/贵宾

-

威望
8
论坛币
577224 个
通用积分
483.1962
学术水平
370 点
热心指数
366 点
信用等级
207 点
经验
356065 点
帖子
4313
精华
8
在线时间
2646 小时
注册时间
2004-12-31
最后登录
2025-12-16

楼主
xuehe 发表于 2019-6-9 09:53:55 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Abstract
Counterfactual prediction requires understanding causal relationships between so-called treatment and outcome variables. This paper provides a recipe for augmenting deep learning methods to accurately characterize such relationships in the presence of instrument variables (IVs)—sources of treatment randomization that are conditionally independent from the outcomes. Our IV specification resolves into two prediction tasks that can be solved with deep neural nets: a first-stage network for treatment prediction and a second-stage network whose loss function involves integration over the conditional treatment distribution. This
Deep IV framework1 allows us to take advantage of off-the-shelf supervised learning techniques to estimate causal effects by adapting the loss function. Experiments show that it outperforms existing machine learning approaches. DeepIV-master.zip (37.21 KB, 需要: 2 个论坛币)

Deep IV_A Flexible Approach for Counterfactual Prediction.pdf (211.82 KB, 需要: 1 个论坛币)




二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Prediction Approach Flexible counter predict

沙发
eeabcde(未真实交易用户) 发表于 2019-6-12 08:12:22
多谢分享

藤椅
jjxm20060807(未真实交易用户) 发表于 2019-6-12 23:11:39
谢谢分享

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-26 12:25