数据科学(Python/R/Julia)数据分析、机器学习、深度学习
决策树
随机森林算法
逻辑回归
SVM
朴素贝叶斯
K最近邻算法
K均值算法
Adaboost算法
马尔可夫
1.决策树
根据一些 feature 进行分类,每个节点提一个问题,通过判断,将数据分为两类,再继续提问。这些问题是根据已有数据学习出来的,再投入新数据的时候,就可以根据这棵树上的问题,将数据划分到合适的叶子上。

2、随机森林
在源数据中随机选取数据,组成几个子集:

S矩阵是源数据,有1-N条数据,A、B、C 是feature,最后一列C是类别:

由S随机生成M个子矩阵:

这M个子集得到 M 个决策树:
将新数据投入到这M个树中,得到M个分类结果,计数看预测成哪一类的数目最多,就将此类别作为最后的预测结果。

3、逻辑回归
当预测目标是概率这样的,值域需要满足大于等于0,小于等于1的,这个时候单纯的线性模型是做不到的,因为在定义域不在某个范围之内时,值域也超出了规定区间。

所以此时需要这样的形状的模型会比较好:

那么怎么得到这样的模型呢?
这个模型需要满足两个条件 “大于等于0”,“小于等于1”
大于等于0 的模型可以选择绝对值,平方值,这里用指数函数,一定大于0;
小于等于1 用除法,分子是自己,分母是自身加上1,那一定是小于1的了。

再做一下变形,就得到了 logistic regressions 模型:

通过源数据计算可以得到相应的系数了:

最后得到 logistic 的图形:

4、SVM
要将两类分开,想要得到一个超平面,最优的超平面是到两类的 margin 达到最大,margin就是超平面与离它最近一点的距离,如下图,Z2>Z1,所以绿色的超平面比较好。

将这个超平面表示成一个线性方程,在线上方的一类,都大于等于1,另一类小于等于-1:

点到面的距离根据图中的公式计算:

所以得到total margin的表达式如下,目标是最大化这个margin,就需要最小化分母,于是变成了一个优化问题:

举个例子,三个点,找到最优的超平面,定义了 weight vector=(2,3)-(1,1):

得到weight vector为(a,2a),将两个点代入方程,代入(2,3)另其值=1,代入(1,1)另其值=-1,求解出 a 和 截矩 w0 的值,进而得到超平面的表达式。

a求出来后,代入(a,2a)得到的就是support vector,
a和w0代入超平面的方程就是support vector machine。
5、朴素贝叶斯
举个在 NLP 的应用:
给一段文字,返回情感分类,这段文字的态度是positive,还是negative:

为了解决这个问题,可以只看其中的一些单词:

这段文字,将仅由一些单词和它们的计数代表:

原始问题是:给你一句话,它属于哪一类 ?
通过bayes rules变成一个比较简单容易求得的问题:

问题变成,这一类中这句话出现的概率是多少,当然,别忘了公式里的另外两个概率。
例子:单词“love”在positive的情况下出现的概率是 0.1,在negative的情况下出现的概率是0.001。

6、K最近临算法
给一个新的数据时,离它最近的 k 个点中,哪个类别多,这个数据就属于哪一类。
例子:要区分“猫”和“狗”,通过“claws”和“sound”两个feature来判断的话,圆形和三角形是已知分类的了,那么这个“star”代表的是哪一类呢?

k=3时,这三条线链接的点就是最近的三个点,那么圆形多一些,所以这个star就是属于猫。

关注“AIU人工智能”公众号,回复“白皮书”获取数据分析、大数据、人工智能行业白皮书及更多精选学习资料!


雷达卡




















京公网安备 11010802022788号







