楼主: 111222xy
16556 14

[教材书籍] Stochastic Integration And Differential Equations 2ed Protter P E [推广有奖]

  • 0关注
  • 1粉丝

已卖:2783份资源

博士生

47%

还不是VIP/贵宾

-

威望
0
论坛币
14182 个
通用积分
15.1935
学术水平
0 点
热心指数
3 点
信用等级
3 点
经验
2902 点
帖子
102
精华
0
在线时间
461 小时
注册时间
2009-2-22
最后登录
2023-6-16

楼主
111222xy 发表于 2010-4-19 11:06:08 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
经过ocr处理的扫描版,挺清楚,无黑边。
请看截图:
Capture.PNG


目录:

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

I Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1 Basic Definitions and Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 The Poisson Process and Brownian Motion ................. 12
4 Levy Processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 19
5 Why the Usual Hypotheses? .............................. 34
6 Local Martingales ....................................... 37
7 Stieltjes Integration and Change of Variables. . . . . . . . . . . . . . .. 39
8 NaIve Stochastic Integration Is Impossible. . . . . . . . . . . . . . . . .. 43
Bibliographic Notes .................................... . . . . .. 44
Exercises for Chapter I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 45

II Semimartingales and Stochastic Integrals .................. 51
1 Introduction to Semimartingales. . . . . . . . . . . . . . . . . . . . . . . . . .. 51
2 Stability Properties of Semimartingales . . . . . . . . . . . . . . . . . . . .. 52
3 Elementary Examples of Semimartingales. . . . . . . . . . . . . . . . . .. 54
4 Stochastic Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 56
5 Properties of Stochastic Integrals . . . . . . . . . . . . . . . . . . . . . . . . .. 60
6 The Quadratic Variation of a Semimartingale . . . . . . . . . . . . . .. 66
7 Ito's Formula (Change of Variables). . . . . . . . . . . . . . . . . . . . . . .. 78
8 Applications of Ito's Formula ............................. 84
Bibliographic Notes ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 92
Exercises for Chapter II ...................................... 94

III Semimartingales and Decomposable Processes ............. 101
1 Introduction ............................................ 101
2 The Classification of Stopping Times ....................... 103
3 The Doob-Meyer Decompositions .......................... 105
4 Quasimartingales ........................................ 116
5 Compensators ........................................... 118
6 The Fundamental Theorem of Local Martingales ............ 124
7 Classical Semimartingales ................................ 127
8 Girsanov's Theorem ..................................... 131
9 The Bichteler-Dellacherie Theorem ........................ 143
Bibliographic Notes .......................................... 147
Exercises for Chapter III ...................................... 147

IV General Stochastic Integration and Local Times ........... 153
1 Introduction ............................................ 153
2 Stochastic Integration for Predictable Integrands ............ 153
3 Martingale Representation ................................ 178
4 Martingale Duality and the Jacod-Yor Theorem on
Martingale Representation ................................ 193
5 Examples of Martingale Representation .................... 200
6 Stochastic Integration Depending on a Parameter ............ 205
7 Local Times ............................................ 210
8 Azema's Martingale ...................................... 227
9 Sigma Martingales ....................................... 233
Bibliographic Notes .......................................... 235
Exercises for Chapter IV ...................................... 236

V Stochastic Differential Equations .......................... 243
1 Introduction ............................................ 243
2 The HP Norms for Semimartingales ........................ 244
3 Existence and Uniqueness of Solutions ..................... 249
4 Stability of Stochastic Differential Equations ................ 257
5 Fisk-Stratonovich Integrals and Differential Equations ........ 270
6 The Markov Nature of Solutions ........................... 291
7 Flows of Stochastic Differential Equations: Continuity and
Differentiability ......................................... 301
8 Flows as Diffeomorphisms: The Continuous Case ............ 310
9 General Stochastic Exponentials and Linear Equations ....... 321
10 Flows as Diffeomorphisms: The General Case ............... 328
11 Eclectic Useful Results on Stochastic Differential Equations ... 338
Bibliographic Notes .......................................... 347
Exercises for Chapter V ...................................... 349

VI Expansion of Filtrations ................................... 355
1 Introduction ............................................ 355
2 Initial Expansions ....................................... 356
3 Progressive Expansions ................................... 369
4 Time Reversal .......................................... 377
Bibliographic Notes .......................................... 383
Exercises for Chapter VI ...................................... 384
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Differential Integration Stochastic Equations Different AND Differential Equations Integration Protter

已有 2 人评分经验 热心指数 收起 理由
cheetahfly + 100 精彩帖子
zhdefei + 1

总评分: 经验 + 100  热心指数 + 1   查看全部评分

沙发
icapm(真实交易用户) 发表于 2010-5-18 09:27:05
你是大大的大好人,赞一个。

藤椅
icapm(真实交易用户) 发表于 2010-5-18 09:27:31
高清影印版,严重推荐。

板凳
111222xy(未真实交易用户) 发表于 2010-5-18 11:58:54
3# icapm 谢谢捧场!!

报纸
peterf(真实交易用户) 在职认证  发表于 2010-9-20 22:56:50
好像有一个更清晰的DJVU格式的,文件比较小,有没有人上传一个。
徘徊在统计学的大门之外

地板
aping7132(未真实交易用户) 发表于 2010-12-11 11:31:30
赞!!!!

7
Brandonp(真实交易用户) 发表于 2010-12-11 13:12:29
不错,其实纸质书也不贵

8
snheleii(未真实交易用户) 发表于 2010-12-12 00:37:39
{:4_208:}{:4_208:}

9
zhenxinyongyuan(真实交易用户) 发表于 2012-11-29 00:02:35
good thing thk
有能耐就活 没能耐就死
我就是这样 活的非常好 和死人差不多

10
yangwag(真实交易用户) 发表于 2012-11-30 17:34:22
很好 !

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-30 19:36