楼主: sshang
1559 0

HOW DO PLANETS FORM? [推广有奖]

  • 1关注
  • 2粉丝

讲师

34%

还不是VIP/贵宾

-

威望
0
论坛币
935 个
通用积分
0.7800
学术水平
6 点
热心指数
1 点
信用等级
6 点
经验
267 点
帖子
230
精华
0
在线时间
450 小时
注册时间
2007-3-20
最后登录
2015-1-30

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
http://hubblesite.org/hubble_discoveries/discovering_planets_beyond/

For centuries, astronomers and philosophers wondered how our solar system and its planets came to be. As telescopes advanced and space probes were sent out to explore, we learned more and more about our solar system, which gave us clues to how it might have taken shape.

But were our ideas right?


We could only see the end result of planet formation, not the process itself. And we had no other examples to study. Even with the knowledge gained about our solar system, we were left to wonder, are there other planetary systems out there, and did they form like ours? Discoveries made by the Hubble Space Telescope are helping us fill in key pieces to the puzzle of how planets form.
CURRENT UNDERSTANDINGA cloud collapses to form a star and disk. Planets form from this disk.
According to our current understanding, a star and its planets form out of a collapsing cloud of dust and gas within a larger cloud called a nebula. As gravity pulls material in the collapsing cloud closer together, the center of the cloud gets more and more compressed and, in turn, gets hotter. This dense, hot core becomes the kernel of a new star.


Meanwhile, inherent motions within the collapsing cloud cause it to churn. As the cloud gets exceedingly compressed, much of the cloud begins rotating in the same direction. The rotating cloud eventually flattens into a disk that gets thinner as it spins, kind of like a spinning clump of dough flattening into the shape of a pizza. These "circumstellar" or "protoplanetary" disks, as astronomers call them, are the birthplaces of planets.

(Small clumps of material within a disk stick together to form larger clumps. Eventually these clumps grow to become planet.)

As a disk spins, the material within it travels around the star in the same direction. Eventually, the material in the disk will begin to stick together, somewhat like household dust sticking together to form dust bunnies. As these small clumps orbit within the disk, they sweep up surrounding material, growing bigger and bigger. The modest gravity of boulder-sized and larger chunks starts to pull in dust and other clumps. The bigger these conglomerates become, the more material they attract, and the bigger they get. Soon, the beginnings of planets — "planetesimals," as they’re called — are taking shape.

In the inner part of the disk, most of the material at this point is rocky, as much of the original gas has likely been gobbled up and cleared out by the developing star. This leads to the formation of smaller, rocky planetesimals close to the star. In the outer part of the disk, though, more gas remains, as well as ices that haven’t yet been vaporized by the growing star. This additional material allows planetesimals farther from the star to gather more material and evolve into giants of ice and gas.

As each planetesimal grows bigger, it starts clearing out the material in its path, snatching up nearby, slow-moving rubble and gas while gravitationally tossing other material out of its way. Eventually, the debris in its path thins out and the planetesimal has a relatively clear lane of traffic around its star.




Hundreds of these planetesimals are forming at the same time, and inevitably they meet up. If their paths cross at just the right time and they’re moving fast enough relative to each other, SMASH! — they collide, sending debris everywhere. But if they slowly meander toward one other, gravity can gently draw them together. They form a union, merging into a larger object. If the participants are farther apart, they might not physically interact but their gravitational encounter can pull each body off course. These wayward objects start to cross other lanes of traffic, setting the stage for additional collisions and other meetings of the rocky kind.

After millions of years, countless encounters between these planetesimals have cleared out much of the disk’s debris and have built up much larger — and many fewer — objects that now dominate their regions. A planetary system is reaching maturity.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:planets Planet Plane form Lane Discovery NASA Hubble planets

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加JingGuanBbs
拉您进交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-4-20 13:24