stata,FGLS回归
回归一:
Cross-sectional time-series FGLS regression
Coefficients: generalized least squares
Panels: homoskedastic
Correlation: no autocorrelation
Estimated covariances = 1 Number of obs = 700
Estimated autocorrelations = 0 Number of groups = 100
Estimated coefficients = 5 Time periods = 7
Wald chi2(4) = 1952.74
Log likelihood = -922.4935 Prob > chi2 = 0.0000
lnt Coef. Std. Err. z P>z [95% Conf. Interval]
lngdp .1039338 .0029807 34.87 0.000 .0980917 .1097759
lnd -.517205 .0736273 -7.02 0.000 -.6615118 -.3728982
apec .6718755 .104525 6.43 0.000 .4670104 .8767407
lu .5319582 .1361562 3.91 0.000 .265097 .7988194
_cons 21.47754 .6615924 32.46 0.000 20.18084 22.77424
回归二增加了两个变量:
Cross-sectional time-series FGLS regression
Coefficients: generalized least squares
Panels: homoskedastic
Correlation: no autocorrelation
Estimated covariances = 1 Number of obs = 700
Estimated autocorrelations = 0 Number of groups = 100
Estimated coefficients = 7 Time periods = 7
Wald chi2(6) = 2389.42
Log likelihood = -869.1573 Prob > chi2 = 0.0000
lnt Coef. Std. Err. z P>z [95% Conf. Interval]
lngdp .098699 .0028182 35.02 0.000 .0931755 .1042225
lnd -.5550855 .0688252 -8.07 0.000 -.6899805 -.4201906
apec .6710518 .0973144 6.90 0.000 .4803192 .8617844
lu .5567073 .1265311 4.40 0.000 .3087109 .8047036
wto .3978175 .0839592 4.74 0.000 .2332604 .5623745
wtoc .6132775 .0644065 9.52 0.000 .4870431 .739512
_cons 21.3736 .6140994 34.80 0.000 20.16999 22.57721
请教如何判断,
是否回归二要更好一些?


雷达卡


京公网安备 11010802022788号







