楼主: 社保补缴121
374 0

[英文文献] Dynamic-Bayesian disease management under state uncertainty: learning and b... [推广有奖]

  • 0关注
  • 0粉丝

等待验证会员

学前班

0%

还不是VIP/贵宾

-

威望
0
论坛币
0 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
10 点
帖子
0
精华
0
在线时间
0 小时
注册时间
2020-9-22
最后登录
2020-9-22

楼主
社保补缴121 发表于 2006-4-6 13:43:44 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
英文文献:Dynamic-Bayesian disease management under state uncertainty: learning and bovine tuberculosis control in New Zealand cattle
英文文献作者:MacLachlan, Matthew,Springborn, Michael
英文文献摘要:
In the context of bovine tuberculosis (bTB) control in New Zealand cattle, we address the problem of management under uncertain disease prevalence by integrating a model of disease transmission and Bayesian learning from testing. We show the implications of accounting for the full dynamic value of information for setting levels of investment in, and targeting of, disease control measures. In the process, we provide a methodology to addressing problems in which learning occurs regarding an uncertain and endogenous state variable. bTB is an infectious and potentially fatal disease of both animals and humans that persists throughout much of the world. In addition to health impacts, trade may be restricted by potential importers that are averse to the possibility of direct transmission via live cattle movements and via animal products to consumers. Despite intensive and sustained control efforts in New Zealand, eradication has been encumbered by characteristics of the pathogen and environmental and anthropogenic factors: a long incubation period, a pervasive but elusive wild host (the common brushtail possum), imperfect testing methods, and the diffuse nature of production. These features have allowed bTB to remain endemic among New Zealand cattle and deer herds since the mid-to-late 20th century, and substantially increased the difficulty of determining prevalence. For an endemic disease such as this, there may be an especially high value to the central veterinary authority in understanding the prevalence of the disease, particularly at a regional scale. More specifically, test results may be used to better inform future testing choices. Modifications of existing bioeconomic models are necessary to capture the value of additional information regarding prevalence. Implicit in existing bioeconomic models of bTB control is the unrealistic assumption that the central veterinary authority knows perfectly the number of facilities that are latently infected without knowing specifically which facilities are infected. We address uncertainty over the true state of disease prevalence by specifying a belief distribution. We then obtain results by using Bayesian and dynamic programming methods to optimize a dynamical system of disease spread and control in which the central authority’s beliefs regarding prevalence is modeled as a partially observed Markov decision processes. The belief distribution is characterized by two parameters that replace the true but uncertain state variable in the dynamic programming problem. The dynamics are complicated by the fact that decision makers are learning about a moving target: an evolving and endogenous disease prevalence. In each period, the central veterinary authority must update its beliefs using the information gained from testing, and using its understanding of the changes in prevalence that result from infections and recoveries. These physical processes are determined in part by the number of facilities that receive testing and subsequent targeted treatment, making prevalence endogenous. This extension allows us to examine efficient testing and application of targeted controls while explicitly modeling uncertainty and learning about the unobserved state. Our model captures both the gains from targeting animal movement restrictions and culling efforts and from using additional information to inform future testing decisions.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝


您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-2-18 02:21