楼主: xiaoqianshufe
1362 3

[文献] 感谢: 英文文献一篇(5金币,但不要workingpaper,必须是发表的文章) [推广有奖]

  • 0关注
  • 0粉丝

硕士生

87%

还不是VIP/贵宾

-

威望
0
论坛币
905 个
通用积分
0.1689
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
748 点
帖子
112
精华
0
在线时间
294 小时
注册时间
2009-11-5
最后登录
2022-7-24

楼主
xiaoqianshufe 发表于 2010-5-31 23:08:08 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Chen, S. X. and T. Huang (2007) ]Nonparametric Estimation of Copula Functions for Dependent Modeling.  Canadian Journal of Statistics, 35,  265-282.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:WORKINGPAPER working 英文文献一篇 英文文献 Work 求助 文献 英文 金币 WORKINGPAPER

沙发
probability 发表于 2010-5-31 23:23:17
This is the paper U wanted, this is the abstract:

Abstract: Copulas characterize the dependence among components of random vectors. Unlike marginal

and joint distributions, which are directly observable, the copula of a random vector is a hidden dependence

structure that links the joint distribution with its margins. Choosing a parametric copula model is thus a

nontrivial task but it can be facilitated by relying on a nonparametric estimator. Here the authors propose

a kernel estimator of the copula that is mean square consistent everywhere on the support. They determine

the bias and variance of this estimator. They also study the effects of kernel smoothing on copula estimation.

They then propose a smoothing bandwidth selection rule based on the derived bias and variance.

After confirming their theoretical findings through simulations, they use their kernel estimator to formulate

a goodness-of-fit test for parametric copula models.
附件: 你需要登录才可以下载或查看附件。没有帐号?我要注册

藤椅
xiaoqianshufe 发表于 2010-6-1 10:46:06
不好意思,已经找到了,多谢
2# probability

板凳
zhkim5858 发表于 2010-6-1 11:02:43
人家费心思找到购买不好吗?

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-6 04:38