Paul Gustafson (Author)
Editorial Reviews
Review
This book shows that error-prone measurements may create serious biases and offers Bayesian approaches to attempt unbiased estimation, or 'adjustments'. … This is a useful book if you have data containing errors or if you have an interest in statistical theory of errors of measurement. As nearly all data is in some way erroneous, it is a useful book for all statisticians and mathematically inclined epidemiologists.
- Statistics in Medicine, 2005
This book provides a good overview of recent topics in measurement error models in the linear and logistic regression context using the Bayesian paradigm… .
- Technometrics
… a welcome addition for anyone who is interested in the topic of mismeasurement and in particular the issue of Bayesian adjustment methods. Although it does not shy away from the theoretical issues surrounding this subject, it remains accessible for practical applied statisticians. The book has two real highlights for me: firstly, the author's focus on the problems that mismeasurement creates in a variety of complex situations, reflecting what practical statisticians deal with regularly. Secondly, the book gives almost equal treatment to the problem of mismeasurement of continuous and discrete variable; it is quite rare to see such extensive treatment of both situations in one place …The examples that are used throughout the book offer great insight, as they highlight the complexities of real life data analysis when mismeasurement is an issue …
Journal of the Royal Statistical Society, Series A., vol. 157(3)
This is a well-written book and contains a great deal of information on the impact of measurement error in explanatory variables, as well as details of methods to adjust for mismeasurement. Considering measurement error in both continous and categorical variables, as well as using Bayesian methods to adjust for mismeasurement, make this an excellent resource for epidemiologists or medical statisticians.
-International Journal of Epidemiology, Zoe Fewell
Product Description
Mismeasurement of explanatory variables is a common hazard when using statistical modeling techniques, and particularly so in fields such as biostatistics and epidemiology where perceived risk factors cannot always be measured accurately. With this perspective and a focus on both continuous and categorical variables, Measurement Error and Misclassification in Statistics and Epidemiology: Impacts and Bayesian Adjustments examines the consequences and Bayesian remedies in those cases where the explanatory variable cannot be measured with precision.The author explores both measurement error in continuous variables and misclassification in discrete variables, and shows how Bayesian methods might be used to allow for mismeasurement. A broad range of topics, from basic research to more complex concepts such as "wrong-model" fitting, make this a useful research work for practitioners, students and researchers in biostatistics and epidemiology."
Product Details
|