楼主: CDA网校
1645 0

[其他] 一文带你完全了解,什么是数据科学——CDA人工智能学院 [推广有奖]

管理员

大师

82%

还不是VIP/贵宾

-

威望
3
论坛币
72719 个
通用积分
3640.2479
学术水平
260 点
热心指数
268 点
信用等级
235 点
经验
205933 点
帖子
5801
精华
19
在线时间
3942 小时
注册时间
2019-9-13
最后登录
2024-11-9

初级热心勋章

相似文件 换一批

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

CDA人工智能学院:数据科学、人工智能从业者的在线学院。

数据科学(Python/R/Julia)数据分析、机器学习、深度学习

统计

统计学是数据科学中最关键的部分。它是大量收集和分析数值数据以获得有用见解的方法或科学。

可视化

可视化技术可帮助您使大量的数据易于理解。

机器学习

机器学习探索了算法的构建和研究,这些算法学习如何预测未来的数据。

深度学习

深度学习方法是新的机器学习研究,其中算法选择要遵循的分析模型。

数据科学过程

1.发现

发现步骤涉及从所有已识别的内部和外部来源获取数据,这有助于您回答业务问题。

数据可以是:

  • 从Web服务器登录
  • 从社交媒体收集的数据
  • 人口普查数据集
  • 使用API从在线资源流式传输数据

2.数据准备

数据可能有很多不一致,例如缺失值,空白列,需要清理的数据格式不正确。您需要在建模之前处理,探索和调整数据。数据越干净,您的预测就越好。

3.模型规划

在此阶段,您需要确定绘制输入变量之间关系的方法和技术。通过使用不同的统计公式和可视化工具来执行模型的规划。SQL分析服务,R和SAS 是用于此目的的一些工具。

4.模型建设

在此步骤中,实际的模型构建过程开始。在这里,数据科学家分发用于培训和测试的数据集。诸如关联,分类和聚类之类的技术应用于训练数据集。一旦准备好模型就针对“测试”数据集进行测试。

5.操作

在此阶段,您将提供包含报告,代码和技术文档的最终基线模型。经过全面测试后,模型将部署到实时生产环境中。

6.传达结果

在这个阶段,主要调查结果将传达给所有利益相关者。这有助于您根据模型的输入确定项目结果是成功还是失败。



数据科学工作角色

数据科学家

数据科学家是一名管理大量数据的专业人士,通过使用各种工具,技术,方法,算法等来提出令人信服的商业愿景。

语言:R,SAS,Python,SQL,Hive,Matlab,Pig,Spark

数据工程师

数据工程师的角色是处理大量数据。负责开发,构建,测试和维护大型处理系统和数据库等架构。

语言:SQL,Hive,R,SAS,Matlab,Python,Java,Ruby,C ++和Perl

数据分析师

数据分析师负责挖掘大量数据。寻找关系,模式,以及数据的趋势。之后,提供引人注目的报告和可视化,以分析数据,从而做出最可行的业务决策。

语言:R,Python,HTML,JS,C,C ++,SQL

统计员

使用统计理论和方法收集,分析数据,理解定性和定量数据。

语言:SQL,R,Matlab,Tableau,Python,Perl,Spark和Hive

数据管理员

数据管理员应确保所有相关用户都可以访问该数据库。他还确保它正确执行并保持安全,不受黑客攻击。

语言:Ruby on Rails,SQL,Java,C#和Python

业务分析师

改善业务流程,是业务执行团队和IT部门之间的中介。

语言:SQL,Tableau,Power BI和Python

DataScience工具


数据科学与商业智能(商业智能)的区别

数据科学的应用

互联网搜索

Google搜索使用数据科学技术在几分之一秒内搜索特定结果

推荐系统

创建推荐系统。例如,Facebook上的“朋友推荐”或“在YouTube上推荐的视频”,一切都是在数据科学的帮助下完成的。

图像和语音识别

语音识别系统像Siri,Google助手,Alexa等运行的数据科学技术。此外,Facebook在数据科学的帮助下,在您上传照片时识别您的朋友。

游戏世界

EA Sports,索尼,任天堂,正在使用数据科学技术。这可以增强您的游戏体验。现在已经开始使用机器学习技术开发游戏。当您移动到更高级别时,它可以自行更新。

在线价格比较

PriceRunner,Junglee,Shopzilla等致力于数据科学机制。在这里,使用API从相关网站获取数据。

数据科学技术的挑战
  • 准确分析需要大量的信息和数据
  • 没有足够的数据科学人才库
  • 管理层不为数据科学团队提供财务支持
  • 无法访问或者难以访问数据
  • 数据科学结果未被业务决策者有效使用
  • 向他人解释数据科学很困难
  • 隐私问题
  • 缺乏重要的领域专家
  • 如果组织规模很小,他们就无法拥有数据科学团队

微信图片_20200423130629.jpg


关注“AIU人工智能实验室”,回复“录播”获取更多人工智能精选直播视频!


完 谢谢观看


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:数据科学 人工智能 CDA FACEBOOK Google搜索

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-11-10 06:31