楼主: CDA网校
2047 1

机器学习中几个常见模型的优缺点——CDA人工智能学院 [推广有奖]

管理员

已卖:189份资源

泰斗

3%

还不是VIP/贵宾

-

威望
3
论坛币
116127 个
通用积分
10045.7294
学术水平
278 点
热心指数
286 点
信用等级
253 点
经验
227942 点
帖子
6896
精华
19
在线时间
4372 小时
注册时间
2019-9-13
最后登录
2025-12-30

初级热心勋章

楼主
CDA网校 学生认证  发表于 2020-9-21 08:48:04 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
CDA人工智能学院致力于以优质的人工智能在线教育资源助力学员的DT职业梦想!课程内容涵盖数据分析机器学习深度学习人工智能tensorFlowPyTorch知识图谱等众多核心技术及行业案例,让每一个学员都可以在线灵活学习,快速掌握AI时代的前沿技术。PS:私信我即可获取《银牌会员》1个月免费试听机会

朴素贝叶斯:优点:对小规模的数据表现很好,适合多分类任务,适合增量式训练。

缺点:对输入数据的表达形式很敏感(连续数据的处理方式)。

决策树:优点:计算量简单,可解释性强,比较适合处理有缺失属性值的样本,能够处理不相关的特征。缺点:容易过拟合(后续出现了随机森林,减小了过拟合现象)。

逻辑回归:优点:实现简单,分类时计算量非常小,速度很快,存储资源低。缺点:容易欠拟合,一般准确度不高;只能处理二分类问题(softmax解决多分类),需线性可分。

损失函数:

20180820104858_96062.png

KNN:优点:思想简单,理论成熟,既可以用来做分类也可以用来做回归; 可用于非线性分类;训练时间复杂度为O(n);准确度高,对数据没有假设,对outlier不敏感。缺点:计算量大;样本不平衡时的问题;需要大量的内存;未归一化时影响很大。

SVM:优点:可用于线性/非线性分类,也可以用于回归;低泛化误差;容易解释;计算复杂度较低。缺点:对参数和核函数的选择比较敏感;原始的SVM只比较擅长处理二分类问题。

损失函数: 20180820104853_68743.png

归一化的作用:

1.      提高梯度下降法求解最优解的速度(很难收敛甚至不能收敛);例如等高线:

20180820104847_18622.png

2.      有可能提高精度;一些分类器需要计算样本之间的距离,例如KNN,若一个特征值范围较大,距离计算将取决于这个特征。

0D04CBB8996CB009643B8D6FD844F0C0.jpg

关注“CDA人工智能学院”,回复“录播”获取更多人工智能精选直播视频!



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:人工智能 机器学习 CDA 优缺点 outlier

沙发
wmqy2004 发表于 2021-8-23 07:29:59
thanks for sharing your understanding on some machine learning algorithms

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-30 21:33