|
Forecast error variance decompositions (FEVD) highlight the relative contribution of each shock to the variation a variable under scrutiny. For the multivariate series $y_t$, the corresponding $h$-step ahead forecast error is $y_{t+h}-y_{t|t}(h)=\Theta_0\varepsilon_{t+h}+\ldots+\Theta_h\varepsilon_{t+1}$, and the forecast error variance of the $k$-th variable is $\sigma_k^2(h)=\sum_{j=0}^{h-1}(\Theta^2_{k1,j}+\ldots+\Theta^2_{kK,j})$ \citep{IntroductionMultipleTS}. Since $\Sigma_{\varepsilon}=I_K$ holds by assumption, the relative contribution of shock $\varepsilon_{it}$ to the $h$-step forecast error variance of variable $y_{kt}$ is
$$
FEVD_{ki}(h)=(\Theta^2_{ki,0}+\ldots+\Theta^2_{ki,h-1})/\sigma_k^2(h).
$$
|