证明:
$\begin{align*}\because \lim_{n \to \infty }\frac{a_n}{(1+a_1)(1+a_2)\cdots (1+a_{n})}&=\lim_{n \to \infty }(\frac{1}{(1+a_1)(1+a_2)\cdots (1+a_{n-1})}\\\\&-\frac{1}{(1+a_1)(1+a_2)\cdots (1+a_{n})}),\end{align*}$
由于所给数列是正数列,故设
$\displaystyle a=\inf\{a_n\}> 0,$
$\begin{align*}\therefore 0&\leq \lim_{n \to \infty }(\frac{1}{(1+a_1)(1+a_2)\cdots (1+a_{n-1})}-\frac{1}{(1+a_1)(1+a_2)\cdots (1+a_{n})})\\\\&\leq \lim_{n \to \infty }\frac{1}{(1+a_1)(1+a_2)\cdots (1+a_{n-1})}=\lim_{n \to \infty }\frac{1}{(1+a)^{n-1}}=0.\end{align*}$
因此有
$\displaystyle \lim_{n \to \infty }\frac{a_n}{(1+a_1)(1+a_2)\cdots (1+a_{n})}=0.$


雷达卡
京公网安备 11010802022788号







