证明:
设
$A=\frac{\partial^2 f}{\partial x^2}(0,0),B=\frac{\partial^2 f}{\partial x\partial y}(0,0),C=\frac{\partial^2 f}{\partial y^2}(0,0),$
则如果函数$f(x,y)$有极小值,则有
$A=\frac{\partial^2 f}{\partial x^2}(0,0)> 0,$
$AC-B^2=\frac{\partial^2 f}{\partial x^2}(0,0)\frac{\partial^2 f}{\partial y^2}(0,0)-(\frac{\partial^2 f}{\partial x\partial y}(0,0))^2> 0.$
而此正是行列式
$\begin{vmatrix}
A & B\\
B & C
\end{vmatrix}$
对应的矩阵
$\begin{bmatrix}
A & B\\
B & C
\end{bmatrix}$
是半下定矩阵。


雷达卡
京公网安备 11010802022788号







