$$\textbf{y}_t \sim \mathcal{N}(\mu_t, \sigma^2_t), \quad t=2,\dots,T$$
$$\mu_t = \alpha + \phi^P_{p=1} \textbf{y}_{t-p}, \quad t=(p+1),\dots,T$$
$$\epsilon = \textbf{y} - \mu$$
$$\delta = (\epsilon > 0) \times 1$$
$$\sigma^2_t = \omega + \sum^Q_{q=1} \theta_{q,1} \delta_{t-1} \epsilon^2_{t-1} + \theta_{q,2} (1-\delta_{t-1}) \epsilon^2_{t-1}$$
$$\alpha \sim \mathcal{N}(0, 1000)$$
$$\phi_p \sim \mathcal{N}(0, 1000), \quad p=1,\dots,P$$
$$\omega \sim \mathcal{HC}(25)$$
$$\theta_{q,j} \sim \mathcal{U}(0, 1), \quad q=1\dots,Q, \quad j=1,\dots,2$$




雷达卡
京公网安备 11010802022788号







