楼主: tulipsliu
8493 294

[学科前沿] [QuantEcon]MATLAB混编FORTRAN语言 [推广有奖]

121
tulipsliu(未真实交易用户) 在职认证  发表于 2020-12-17 19:07:50
where ${u_i} = {t_\nu }^{ - 1}\left( {F\left( {{x_i};\nu } \right)} \right)$,
where $t_\nu^{-1}$ is the quantile function of the student distribution with
shape parameter $\nu$.
$$
\tau \left( {{x_i},{x_j}} \right) = 4\int_0^1 {\int_0^1 {C\left( {{u_i},{u_j}} \right)dC\left( {{u_i},{u_j}} \right) - 1} }.
$$

122
tulipsliu(未真实交易用户) 在职认证  发表于 2020-12-17 19:09:58
$$
\varphi_R(u) = \prod\limits_{i = 1}^n {{\varphi_{\bar w{Z_i}}}} (u)
=  \exp{
   \left(
   \text{i}u\sum\limits_{j = 1}^d \bar\mu_j +
   \sum\limits_{j = 1}^d
   \left(
   \frac{\lambda_j}{2}
   \log{\left(\frac{\gamma}{\upsilon}\right)}
   +
   \log \left(
   \frac{K_{\lambda _j}(\bar\delta_j\sqrt{\upsilon})}{K_{\lambda_j}( \bar\delta_j \sqrt{\gamma})}
   \right)
   \right)
   \right)
   }
$$

123
tulipsliu(未真实交易用户) 在职认证  发表于 2020-12-17 19:11:15
where, $\gamma  = \bar \alpha _j^2 - \bar \beta _j^2$, $\upsilon  = \bar \alpha _j^2 - {({{\bar \beta }_j} + {\text{i}}u)^2}$,
and $(\bar \alpha_j, \bar \beta_j, \bar \delta_j, \bar \mu_j)$ are the scaled
versions of the parameters $(\alpha_{i}, \beta_{i}, \delta_{i}, \mu_{i})$
as shown in \eqref{eq:portfolio2}. The density may be accurately
approximated by FFT as follows,
$$
{f_R}(r) = \frac{1} {{2\pi }}\int_{ - \infty }^{ + \infty } {{e^{( - \text{i}u r)}}} \varphi_R
(u)\mathrm{d}u \approx \frac{1} {{2\pi }}\int_{ - s}^s {{e^{( - \text{i}u r)}}} \varphi_R
(u)\mathrm{d}u.
$$

124
tulipsliu(未真实交易用户) 在职认证  发表于 2020-12-17 19:11:53
$$
\begin{gathered}
  {M_{GH(\lambda ,\alpha ,\beta ,\delta ,\mu )}}(u) = {e^{\mu u}}{M_{GIG\left( {\lambda ,\delta \sqrt {{\alpha ^2} - {\beta ^2}} } \right)}}\left( {\frac{{{u^2}}}{2} + \beta u} \right), \hfill \\
   = {e^{\mu u}}{\left( {\frac{{{\alpha ^2} - {\beta ^2}}}{{{\alpha ^2} - {{(\beta  + u)}^2}}}} \right)^{\lambda /2}}\frac{{{K_\lambda }\left( {\delta \sqrt {{\alpha ^2} - {{(\beta  + u)}^2}} } \right)}}{{{K_\lambda }\left( {\delta \sqrt {{\alpha ^2} - {\beta ^2}} } \right)}} \hfill \\
\end{gathered}
$$

125
tulipsliu(未真实交易用户) 在职认证  发表于 2020-12-17 19:13:42
where $M_{GIG}$ represents the moment generating function of the Generalized Inverse
Gaussian which forms the mixing distribution in this variance-mean mixture subclass.
Powers of the MGF, $M_{GH}(u)^p$, only have the representation in \eqref{appendixI:eq:ghypmom}
for $p=1$, which means that GH distributions are not closed under convolution
with the exception of the NIG, and only in the case when the shape and skew parameters
are the same. The MGF of the NIG is,
$$
{M_{NIG(\alpha ,\beta ,\delta ,\mu )}}(u) = {e^{\mu u}}\frac{{{e^{\delta \sqrt {{\alpha ^2} - {\beta ^2}} }}}}{{{e^{\delta \sqrt {{\alpha ^2} - {{(\beta  + u)}^2}} }}}}.
$$
$$
NIG(\alpha ,\beta ,{\delta _1},{\mu _1}) \times...\times NIG(\alpha ,\beta ,{\delta _n},{\mu _n}) = NIG(\alpha ,\beta ,{\delta _1} + ... + {\delta _n},{\mu _1} + ... + {\mu _n}).
$$
$$
{\phi _{GH(\lambda ,\alpha ,\beta ,\delta ,\mu )}}(u) = {e^{\mu \text{i}u}}{\left( {\frac{{{\alpha ^2} - {\beta ^2}}}{{{\alpha ^2} - {{(\beta  + {\text{i}}u)}^2}}}} \right)^{\lambda /2}}\frac{{{K_\lambda }\left( {\delta \sqrt {{\alpha ^2} - {{(\beta  + {\text{i}}u)}^2}} } \right)}}{{{K_\lambda }\left( {\delta \sqrt {{\alpha ^2} - {\beta ^2}} } \right)}}.
$$

126
tulipsliu(未真实交易用户) 在职认证  发表于 2020-12-17 19:14:32
$$
{\phi _{port}}(u) = \exp\Biggl\{\text{i}u \sum\limits_{j = 1}^d \biggl({\bar \mu }_j+ \frac{\lambda _j}{2}\log{\left( {\bar \alpha _j^2 - \bar \beta _j^2} \right)} - \frac{\lambda _j}{2} \log{\left( \bar \alpha _j^2 - ({\bar \beta }_j + {\text{i}}u)^2 \right)} +  \nonumber \\
\log{\left( K_{\lambda_j}\left( {\bar \delta }_j\sqrt{\bar \alpha _j^2 - ({\bar \beta }_j + \text{i}u)^2}\right) \right)} - \log{\left( K_{\lambda _j}\left({\bar \delta}_j \sqrt{\bar \alpha _j^2 - \bar \beta _j^2} \right) \right)} \biggr) \Biggr\}
$$

127
tulipsliu(未真实交易用户) 在职认证  发表于 2020-12-17 21:02:28
$$
\Delta X_{t}^{1} \\ \Delta X_{t}^{2}
$$

128
tulipsliu(未真实交易用户) 在职认证  发表于 2020-12-17 21:29:48
where $\Normal{b}{B}$ denotes the normal distribution with mean $b\in\mathbb{R}$ and variance $B\in\mathbb{R}^+$, and $\varepsilon_t$ and $\eta_t$ are independent.
The log-variance process $\hvec=(\hpar_1,\dots,\hpar_\leny)^\top$ is initialized by $\hpar_0\sim\Normal{\mupar}{\sigmapar^2/(1-\phipar^2)}$.
$\bm X=(\bm x_1^\top,\dots,\bm x_\leny^\top)^\top$ is an $\leny\times\nreg$ matrix containing in its $t$th row the vector of $\nreg$ regressors at time $t$.
The $\nreg$ regression coefficients are collected in $\bm\beta=(\beta_1,\dots,\beta_\nreg)^\top$.
We refer to $\svpars=(\mupar,\phipar,\sigmapar)$ as the SV parameters: $\mupar$ is the level, $\phipar$ is the persistence, and $\sigmapar$ (also called \emph{volvol}) is the standard deviation of the log-variance.

129
tulipsliu(未真实交易用户) 在职认证  发表于 2020-12-17 21:51:16
$$
y_i = x_i^\top \beta_i + u_i
\qquad (i = 1, \dots, n),
$$

130
tulipsliu(未真实交易用户) 在职认证  发表于 2020-12-17 22:39:45
Re-compiling KFAS
-  installing *source* package 'KFAS' ... (335ms)
   ** using staged installation
   ** libs
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  approx.f95 -o approx.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  approxloop.f95 -o approxloop.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  artransform.f95 -o artransform.o
   "C:/rtools40/mingw64/bin/"gcc  -I"D:/softApp/R/include" -DNDEBUG          -O2 -Wall  -std=gnu99 -mfpmath=sse -msse2 -mstackrealign -c cdistwrap.c -o cdistwrap.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  covmeanw.f95 -o covmeanw.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  filter1step.f95 -o filter1step.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  filter1stepnovar.f95 -o filter1stepnovar.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  filtersimfast.f95 -o filtersimfast.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  gloglik.f95 -o gloglik.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  gsmoothall.f95 -o gsmoothall.o
   "C:/rtools40/mingw64/bin/"gcc  -I"D:/softApp/R/include" -DNDEBUG          -O2 -Wall  -std=gnu99 -mfpmath=sse -msse2 -mstackrealign -c init.c -o init.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  isample.f95 -o isample.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  isamplefilter.f95 -o isamplefilter.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  kfilter.f95 -o kfilter.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  kfilter2.f95 -o kfilter2.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  kfstheta.f95 -o kfstheta.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  ldl.f95 -o ldl.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  ldlssm.f95 -o ldlssm.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  marginalxx.f95 -o marginalxx.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  mvfilter.f95 -o mvfilter.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  ngfilter.f95 -o ngfilter.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  ngloglik.f95 -o ngloglik.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  ngsmooth.f95 -o ngsmooth.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  predict.f95 -o predict.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  ptheta.f95 -o ptheta.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  pytheta.f95 -o pytheta.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  simfilter.f95 -o simfilter.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  simgaussian.f95 -o simgaussian.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  simgaussianuncond.f95 -o simgaussianuncond.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  smoothonestep.f95 -o smoothonestep.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  smoothsim.f95 -o smoothsim.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  smoothsimfast.f95 -o smoothsimfast.o
   C:/rtools40/mingw64/bin/gcc -shared -s -static-libgcc -o KFAS.dll tmp.def approx.o approxloop.o artransform.o cdistwrap.o covmeanw.o filter1step.o filter1stepnovar.o filtersimfast.o gloglik.o gsmoothall.o init.o isample.o isamplefilter.o kfilter.o kfilter2.o kfstheta.o ldl.o ldlssm.o marginalxx.o mvfilter.o ngfilter.o ngloglik.o ngsmooth.o predict.o ptheta.o pytheta.o simfilter.o simgaussian.o simgaussianuncond.o smoothonestep.o smoothsim.o smoothsimfast.o -LD:/softApp/R/bin/x64 -lRlapack -LD:/softApp/R/bin/x64 -lRblas -lgfortran -lm -lquadmath -lgfortran -lm -lquadmath -LD:/softApp/R/bin/x64 -lR
   installing to C:/Users/ADMINI~1/AppData/Local/Temp/Rtmpo9CCsV/devtools_install_10a44fa971e2/00LOCK-KFAS/00new/KFAS/libs/x64
-  DONE (KFAS)
Writing NAMESPACE
Writing NAMESPACE
-- Building -------------------------------------------------------------------------------- KFAS --
Setting env vars:
* CFLAGS    : -Wall -pedantic -fdiagnostics-color=always
* CXXFLAGS  : -Wall -pedantic -fdiagnostics-color=always
* CXX11FLAGS: -Wall -pedantic -fdiagnostics-color=always
----------------------------------------------------------------------------------------------------
√  checking for file 'E:\devpackage\KFAS/DESCRIPTION' ...
-  preparing 'KFAS':
√  checking DESCRIPTION meta-information ...
-  cleaning src
-  installing the package to build vignettes (820ms)
   creating vignettes ...

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2025-12-22 07:16