楼主: tulipsliu
8476 294

[学科前沿] [QuantEcon]MATLAB混编FORTRAN语言 [推广有奖]

31
tulipsliu(未真实交易用户) 在职认证  发表于 2020-12-13 19:49:04
$$
\begin{array}{l}
\frac{\sigma_1 \,\sigma_2 }{2}+\frac{\sigma_1 \,{\mathrm{e}}^{\frac{t\,\sqrt{\gamma^2 -4\,{\omega_0 }^2 }}{2}} }{2}-\frac{\gamma \,\sigma_1 \,\sigma_2 }{2\,\sqrt{\gamma^2 -4\,{\omega_0 }^2 }}+\frac{\gamma \,\sigma_1 \,{\mathrm{e}}^{\frac{t\,\sqrt{\gamma^2 -4\,{\omega_0 }^2 }}{2}} }{2\,\sqrt{\gamma^2 -4\,{\omega_0 }^2 }}\\
\mathrm{}\\
\textrm{where}\\
\mathrm{}\\
\;\;\sigma_1 ={\mathrm{e}}^{-\frac{\gamma \,t}{2}} \\
\mathrm{}\\
\;\;\sigma_2 ={\mathrm{e}}^{-\frac{t\,\sqrt{\gamma^2 -4\,{\omega_0 }^2 }}{2}}
\end{array}
$$

32
tulipsliu(未真实交易用户) 在职认证  发表于 2020-12-13 20:02:24
$$
\mathrm{cosh}\left(\omega_0 \,t\,\sqrt{\zeta^2 -1}\right)\,{\mathrm{e}}^{-\omega_0 \,t\,\zeta }
$$

33
tulipsliu(未真实交易用户) 在职认证  发表于 2020-12-13 20:03:32
$$
\left(\begin{array}{c}
m\,\frac{\partial }{\partial t}\;\mathrm{Dxt}\left(t\right)-\frac{F\left(t\right)\,x\left(t\right)}{r}\\
g\,m+m\,\frac{\partial }{\partial t}\;\mathrm{Dyt}\left(t\right)-\frac{F\left(t\right)\,y\left(t\right)}{r}\\
-r^2 +{x\left(t\right)}^2 +{y\left(t\right)}^2 \\
\mathrm{Dxt}\left(t\right)-\frac{\partial }{\partial t}\;x\left(t\right)\\
\mathrm{Dyt}\left(t\right)-\frac{\partial }{\partial t}\;y\left(t\right)
\end{array}\right)
$$

34
tulipsliu(未真实交易用户) 在职认证  发表于 2020-12-13 20:04:04
$$
\left(\begin{array}{c}
m\,\mathrm{Dxtt}\left(t\right)-\frac{F\left(t\right)\,x\left(t\right)}{r}\\
g\,m+m\,\mathrm{Dytt}\left(t\right)-\frac{F\left(t\right)\,y\left(t\right)}{r}\\
-r^2 +{x\left(t\right)}^2 +{y\left(t\right)}^2 \\
\mathrm{Dxt}\left(t\right)-{\textrm{Dxt}}_1 \left(t\right)\\
\mathrm{Dyt}\left(t\right)-{\textrm{Dyt}}_1 \left(t\right)\\
2\,{\textrm{Dxt}}_1 \left(t\right)\,x\left(t\right)+2\,{\textrm{Dyt}}_1 \left(t\right)\,y\left(t\right)\\
2\,y\left(t\right)\,\frac{\partial }{\partial t}\;{\textrm{Dyt}}_1 \left(t\right)+2\,{{\textrm{Dxt}}_1 \left(t\right)}^2 +2\,{{\textrm{Dyt}}_1 \left(t\right)}^2 +2\,\mathrm{Dxt1t}\left(t\right)\,x\left(t\right)\\
\mathrm{Dxtt}\left(t\right)-\mathrm{Dxt1t}\left(t\right)\\
\mathrm{Dytt}\left(t\right)-\frac{\partial }{\partial t}\;{\textrm{Dyt}}_1 \left(t\right)\\
{\textrm{Dyt}}_1 \left(t\right)-\frac{\partial }{\partial t}\;y\left(t\right)
\end{array}\right)
$$

35
tulipsliu(未真实交易用户) 在职认证  发表于 2020-12-13 20:04:40
$$
\left(\begin{array}{cc}
\mathrm{Dytt}\left(t\right) & \frac{\partial }{\partial t}\;\mathrm{Dyt}\left(t\right)\\
\mathrm{Dxtt}\left(t\right) & \frac{\partial }{\partial t}\;\mathrm{Dxt}\left(t\right)\\
{\textrm{Dxt}}_1 \left(t\right) & \frac{\partial }{\partial t}\;x\left(t\right)\\
{\textrm{Dyt}}_1 \left(t\right) & \frac{\partial }{\partial t}\;y\left(t\right)\\
\mathrm{Dxt1t}\left(t\right) & \frac{\partial^2 }{\partial t^2 }\;x\left(t\right)
\end{array}\right)
$$

36
tulipsliu(未真实交易用户) 在职认证  发表于 2020-12-13 20:05:13
$$
\frac{d^2y}{dt^2} = (1-y^2)\frac{dy}{dt} - y
$$

37
tulipsliu(未真实交易用户) 在职认证  发表于 2020-12-13 20:06:20
1. Define Parameters of the Model Using Stochastic Differential Equations
$$
dX = \mu(t, X) dt + \sigma(t, X) dB(t)
$$

38
tulipsliu(未真实交易用户) 在职认证  发表于 2020-12-13 20:06:59
Manually integrate the right side by parts. The result is
$$\frac{\partial}{\partial X} \left(k(2)\frac{\partial v}{\partial X}\right) + k(3) -
\frac{\partial v}{\partial X} \frac{\partial k(2)}{\partial X}
$$

39
tulipsliu(未真实交易用户) 在职认证  发表于 2020-12-13 20:07:29
2. Apply Ito's Rule
Asset prices follow a multiplicative process. That is, the logarithm of the price can be described in terms of an SDE, but the expected value of the price itself is of interest because it describes the profit, and thus we need an SDE for the latter.
In general, if a stochastic process X is given in terms of an SDE, then Ito's rule says that the transformed process G(t, X) satisfies

$$
dG = \left(\mu \frac{dG}{dX} + \frac{\sigma^2}{2} \frac{d^2G}{dX^2} +
\frac{dG}{dt}\right) dt + \frac{dG}{dX} \sigma dB(t)
$$

40
tulipsliu(未真实交易用户) 在职认证  发表于 2020-12-13 20:09:07
3. Solve Feynman-Kac Equation
Before you can convert symbolic expressions to MATLAB function handles, you must replace function calls, such as diff(v(t, X), X) and v(t, X), with variables. You can use any valid MATLAB variable names.

$$
\frac{{\sigma \left(t,X\right)}^2 \,\frac{\partial^2 }{\partial X^2 }\;y\left(X\right)}{2}+\mu \left(t,X\right)\,\frac{\partial }{\partial X}\;y\left(X\right)=-1
$$
$$
{\left(\frac{X\,{\sigma_0 }^2 }{2}+X\,\mu_0 \right)}\,\frac{\partial }{\partial X}\;y\left(X\right)+\frac{X^2 \,{\sigma_0 }^2 \,\frac{\partial^2 }{\partial X^2 }\;y\left(X\right)}{2}=-1
$$
$$
\begin{array}{l}
\frac{2\,\mu_0 \,\sigma_5 \,\mathrm{log}\left(b\right)-2\,\mu_0 \,\sigma_4 \,\mathrm{log}\left(a\right)+a^{\sigma_1 } \,{\sigma_0 }^2 \,\sigma_5 \,\sigma_4 -b^{\sigma_1 } \,{\sigma_0 }^2 \,\sigma_5 \,\sigma_4 }{\sigma_3 }-\frac{\mathrm{log}\left(X\right)}{\mu_0 }+\frac{\sigma_2 \,{\left(\sigma_7 -\sigma_6 -a^{\sigma_1 } \,{\sigma_0 }^2 \,\sigma_5 +b^{\sigma_1 } \,{\sigma_0 }^2 \,\sigma_4 \right)}}{\sigma_3 }+\frac{X^{\sigma_1 } \,{\sigma_0 }^2 \,\sigma_2 }{2\,{\mu_0 }^2 }\\
\mathrm{}\\
\textrm{where}\\
\mathrm{}\\
\;\;\sigma_1 =\frac{2\,\mu_0 }{{\sigma_0 }^2 }\\
\mathrm{}\\
\;\;\sigma_2 ={\mathrm{e}}^{-\frac{2\,\mu_0 \,\mathrm{log}\left(X\right)}{{\sigma_0 }^2 }} \\
\mathrm{}\\
\;\;\sigma_3 =2\,{\mu_0 }^2 \,{\left(\sigma_5 -\sigma_4 \right)}\\
\mathrm{}\\
\;\;\sigma_4 ={\mathrm{e}}^{-\frac{\sigma_6 }{{\sigma_0 }^2 }} \\
\mathrm{}\\
\;\;\sigma_5 ={\mathrm{e}}^{-\frac{\sigma_7 }{{\sigma_0 }^2 }} \\
\mathrm{}\\
\;\;\sigma_6 =2\,\mu_0 \,\mathrm{log}\left(b\right)\\
\mathrm{}\\
\;\;\sigma_7 =2\,\mu_0 \,\mathrm{log}\left(a\right)
\end{array}
$$

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2025-12-20 23:45