楼主: cls2
7751 14

[学习分享] Mplus 课程材料 [推广有奖]

  • 0关注
  • 2粉丝

已卖:491份资源

高中生

47%

还不是VIP/贵宾

-

威望
0
论坛币
24172 个
通用积分
0.1500
学术水平
6 点
热心指数
5 点
信用等级
2 点
经验
8932 点
帖子
19
精华
0
在线时间
36 小时
注册时间
2007-1-27
最后登录
2025-9-24

楼主
cls2 发表于 2011-3-16 08:36:23 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
包括教材和相关数据和程序文件
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Mplus PLUS MPL Plu 相关数据 课程 Mplus

AAA_Course Files.zip
下载链接: https://bbs.pinggu.org/a-867723.html

29.77 MB

需要: 2 个论坛币  [购买]

已有 1 人评分论坛币 学术水平 信用等级 收起 理由
lihoujian + 20 + 1 + 2 精彩帖子

总评分: 论坛币 + 20  学术水平 + 1  信用等级 + 2   查看全部评分

沙发
有福有德(真实交易用户) 在职认证  发表于 2011-4-17 02:11:25
感谢感谢了,

藤椅
rockymu(真实交易用户) 发表于 2011-4-19 22:13:46
谢谢了,非常好!!

板凳
inspiration2012(真实交易用户) 发表于 2011-10-30 23:39:11
Thanks for your sharing!

报纸
fishing_boy(真实交易用户) 在职认证  发表于 2011-12-10 14:38:32

downloaded thanks

地板
灰白色1988(未真实交易用户) 发表于 2012-3-23 13:33:41
唉都没钱买!

7
Jerome.chan(真实交易用户) 发表于 2012-4-17 20:25:15
感谢!
我要科研好

8
徐俐(未真实交易用户) 在职认证  发表于 2012-6-6 11:23:30

9
yuanhaixia(真实交易用户) 发表于 2012-7-17 14:49:00
谢谢分享

10
offandon(真实交易用户) 发表于 2012-7-27 13:34:48
应该是大体内容吧.

COURSE OUTLINE
PART I: FUNDAMENTALS OF STRUCTURAL EQUATION MODELING
1.        Review of Factor Analysis and Linear Regression Analysis
Exploratory and confirmatory factor analysis (EFA and CFA)
Example 1.1: An Exploratory Factor Analysis using SPSS
Example 1.2: A Confirmatory Factor Analysis using Mplus
Linear regression analysis
Example 1.3: A simple regression using SPSS
Example 1.4: A multiple regression using Mplus

2.        Introduction to Structural Equation Modeling (SEM)
Fundamental principles underlying structural equation modeling

3.        Model Conceptualisation, Path Diagram Construction and Model Specification
SEM Step 1. Model conceptualisation
SEM Steps 2 & 3. Path diagram construction and Model specification

4.        Model Identification and Parameter Estimation
SEM Step 4. Model Identification
SEM Step 5. Parameter Estimation
Using Mplus to estimate parameters

5.        Assessing Model Fit, Model Re-specification and Model Cross Validation
SEM Step 6. Assessing model fit
SEM Step 7. Model re-specification
SEM Step 8. Model cross-validation


PART II: BASIC MODELS
6.        Models with Observed Variables only
Regression, recursive and non-recursive path models with continuous variables,
Probit, Logistic, and Multinomial logistic regression for categorical dependent variables; Poisson regression for count dependent variables;
Regression for censored variables.

7.        One Factor Measurement Models
Confirmatory factor analysis: Parallel vs. congeneric measurement models
Modeling one factor congeneric measurement models
Correlated error variances in one factor congeneric measurement models
Factor score regression weights
Reliability and validity

8.        Confirmatory and Second Order Factor Analysis
Confirmatory factor analysis
Discriminant Validity
Multitrait-Multimethod models
Second order factor analysis
CFA with categorical, censored and count variables


9.        Full Structural Equation Models for Latent Variables
Path analysis with latent variables
Multiple Indicator and Multiple Causes (MIMIC) models
Longitudinal (or panel) studies: Two-wave models
Simplex models
Totally endogenous models
Mediating in Full Models


PART III: PROBLEMS IN STRUCTURAL EQUATION MODELING
10.        Dealing with Data Problems
Missing Data
Outliers
Ordinal and/or dichotomous data and the WLSMV estimator

11.        Dealing with Model Problems
Unidentified models: Constraining Parameters
Non-positive definite matrices
Constraining error variances to be non-negative


12.        Constructing Composite Variables for use in Structural Equation Models
Using composite scale reliabilities to fix composite variable regression coefficients and measurement error variances in subsequent structural equation models
A worked example: The LoUQ Instrument


PART IV: ADVANCED STRUCTURAL EQUATION MODELS
13.        Multi-group analysis
Testing model invariance across groups
Testing parameter invariance across groups

14.        Interaction and Non-linear Effects in Structural Equation Modeling
Analyses of interactions with categorical moderator variables
Analyses with interactions amongst continuous variables
Non-linear Effects

15.        Mean structure analysis
Regression models with intercepts
Estimation of factor means
An SEM alternative to analysis of covariance

16.        Two approaches to Longitudinal or Repeated Measure Designs
Linear Growth Modeling (LGM) for a continuous outcome
LGM for a categorical outcome
Quadratic growth modeling; and
LGM for a continuous outcome with time invariant and time-varying covariates.


17.        Multilevel structural equation modeling
Two-level regression analysis;
Two-level CFA;
Two-level SEM;
Two-level growth models; and
Multi-level mixture modeling.

18.        Mixture Modeling (including Latent Class Analysis)
Mixture regression analysis;
Latent Class Analysis (LCA) with binary, ordinal, nominal or continuous latent class indicators;
CFA and Structural equation mixture modeling.
Longitudinal models include Growth Mixture Modeling (GMM) for a continuous or categorical outcome;
GMM with known classes (multi-group analysis); and
Latent Class Growth Analysis (LCGA) for a binary, ordinal or count outcome.

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2026-1-29 23:20