证明
类似的考题已经有多所学校采用过。解题方法主要是利用函数二阶连续可微,对一次微分运用Lagrange微分中值定理。由已知极值条件,设函数在$\displaystyle x_0\in(0,1)$取得极大值,即有$f(x_0)=0$.
由Lagrange中值定理,得
$\displaystyle f'(0)=f'(x_0)+f''(\xi_1)(0-x_0),\xi_1\in(0,x_0)$
$\displaystyle f'(1)=f'(x_0)+f''(\xi_2)(1-x_0),\xi_2\in(x_0,1)$
对上述两个等式,分别取绝对值,并适当放大,得
$\displaystyle |f'(0)|=|f'(x_0)+f''(\xi_1)(0-x_0)|\leq x_0|f''(\xi_1)|=x_0M.$
$\displaystyle |f'(1)|=|f'(x_0)+f''(\xi_2)(1-x_0)|\leq (1-x_0)|f''(\xi_2)|=(1-x_0)M.$
两式相加
$\displaystyle \therefore |f'(0)|+|f'(1)|\leq x_0M+(1-x_0)M=M.$


雷达卡
京公网安备 11010802022788号







