【复旦大学数学分析2023】
证明
由积分的等价性定理,如果要使
$\displaystyle (P-f)dx+(Q-g)dy+(R-h)dz$
为全微分。则相当于下列条件成立
$\displaystyle \frac{\partial(P-f)}{\partial y}=\frac{\partial(Q-g)}{\partial x},\frac{\partial P}{\partial y}-\frac{\partial f}{\partial y}=\frac{\partial Q}{\partial x}-\frac{\partial g}{\partial x},$
$\displaystyle \frac{\partial(Q-g)}{\partial z}=\frac{\partial(R-h)}{\partial y},\frac{\partial Q}{\partial z}-\frac{\partial g}{\partial z}=\frac{\partial R}{\partial y}-\frac{\partial h}{\partial y},$
$\displaystyle \frac{\partial(R-h)}{\partial x}=\frac{\partial(P-f)}{\partial z},\frac{\partial R}{\partial x}-\frac{\partial h}{\partial x}=\frac{\partial P}{\partial z}-\frac{\partial f}{\partial z},$
于是结合已知条件,只要令
$\displaystyle \frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}=\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=c,$
$\displaystyle \frac{\partial h}{\partial y}-\frac{\partial g}{\partial z}=\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}=a,$
$\displaystyle \frac{\partial f}{\partial z}-\frac{\partial h}{\partial x}=\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}=b,$
即可使
$\displaystyle (P-f)dx+(Q-g)dy+(R-h)dz$
为全微分。