|
传统的线性VAR模型基于一个理想的假设,那就是现实的经济结构不会改变,因此模型的参数在整个时期内是一致的,不会因外部环境的变化而改变。20世纪70年代以来,随着非线性科学理论的迅速发展和经济发展的波动性,人们逐渐意识到线性分析范式存在严重问题,这种范式可能正是导致现代经济分析和预测在经济波动情况下普遍失效的根本原因。
非线性方法作为能够描述宏观经济时间序列中非线性和结构性变化特征的一种有效工具,随后被频繁应用于政策效应和经济波动的测度当中。非线性动态模型常见于三种类型:马尔可夫机制转换向量自回归模型(Markov Switching Vector Auto Regression,MSVAR)、门限向量自回归模型(Threshold Vector Auto Regression Model,TVAR)和平滑转换向量自回归模型(Smooth Transition Vector Auto Regressionmodel,STVAR)。MSVAR由Hamilton(1990)较早提出,Krolzig(1997)已经开发了基于Ox软件的MSVAR极大似然估计技术。该模型假定转换是由外生的不可观测的马尔可夫链决定,但是不能给出机制转换的非线性表达形式,一般只能推断不同机制转换的概率,由于其转换机制是离散的,因而限制了它的应用;TVAR是将Tong等(1978)提出的非线性时间序列门限模型(Threshold Model)与VAR模型相结合而形成,用于刻画不同区制或状态下变量之间的作用机制和区制间非线性的动态特征。
该模型允许机制变化是内生的,但是引起机制转化的门限却是不可直接观测的,转换机制同样是离散的;STVAR是Weise(1993)在研究转换机制时为获得转换函数而提出的模型,该模型可以通过恰当的方式获得转换变量和转换函数,从而使机制的转换平滑化或渐进化,方便了人们对转换过程的认识。根据转换函数的特征,可设置两种平滑转换自回归模型:逻辑斯特STVAR(LSTVAR)模型和指数STVAR(ESTVAR)模型。
BEKK思想就是让所有的参数都以二次型的形式放进模型来确保所有的方差都是正的。这个主要是用来做波动性溢出效应。顾名思义,就是看变量的波动(variance)之间是否存在相关性。
|