想问下大家在用probit做控制行业效应和区域效应时,出现下面这种情况,是为什么啊?
Probit regression Number of obs = 1,300
LR chi2(34) = 285.30
Prob > chi2 = 0.0000
Log likelihood = -755.46258 Pseudo R2 = 0.1588
------------------------------------------------------------------------------
y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
fc1 | -.4494885 .1057842 -4.25 0.000 -.6568218 -.2421553
age1 | -.0572376 .1382494 -0.41 0.679 -.3282015 .2137263
size | .2067122 .0336998 6.13 0.000 .1406618 .2727627
gender | -.0088442 .1380311 -0.06 0.949 -.2793802 .2616919
own | -.9053287 .2214885 -4.09 0.000 -1.339438 -.4712193
growth | 1.369531 .3301678 4.15 0.000 .7224138 2.016648
stock | .0009197 .0012955 0.71 0.478 -.0016194 .0034587
compet | .2109641 .0443311 4.76 0.000 .1240768 .2978515
var1 | -.2832949 .1064447 -2.66 0.008 -.4919227 -.0746671
var2 | .2212405 .0573077 3.86 0.000 .1089195 .3335615
var3 | .0000253 .0000106 2.37 0.018 4.41e-06 .0000461
var4 | 1.157005 .2489511 4.65 0.000 .6690696 1.64494
1.industry1 | -.5781458 .3481605 -1.66 0.097 -1.260528 .1042362
1.industry2 | -.8496289 .3538484 -2.40 0.016 -1.543159 -.1560988
1.industry3 | -.9456695 .356415 -2.65 0.008 -1.64423 -.247109
1.industry4 | -1.3288 .5245297 -2.53 0.011 -2.356859 -.3007407
1.industry5 | .1177172 .8742647 0.13 0.893 -1.59581 1.831244
1.industry6 | -.1378464 .4781355 -0.29 0.773 -1.074975 .799282
1.industry7 | -1.231957 .4916305 -2.51 0.012 -2.195535 -.2683785
1.industry8 | -.7303578 .6564836 -1.11 0.266 -2.017042 .5563264
1.industry9 | -.4696308 .3542061 -1.33 0.185 -1.163862 .2246004
1.industry10 | -.5635164 .3522989 -1.60 0.110 -1.25401 .1269767
1.industry11 | -.8410386 .3514448 -2.39 0.017 -1.529858 -.1522194
1.industry12 | -.608156 .3571131 -1.70 0.089 -1.308085 .0917729
1.industry13 | -1.089222 .354388 -3.07 0.002 -1.78381 -.3946346
1.industry14 | -.3349542 .3592392 -0.93 0.351 -1.03905 .3691417
1.industry15 | -.5355652 .3522641 -1.52 0.128 -1.22599 .1548598
1.industry16 | -.772749 .5126365 -1.51 0.132 -1.777498 .2320002
1.industry17 | -.5586847 .3545804 -1.58 0.115 -1.253649 .1362801
1.industry18 | -.5431189 .5527974 -0.98 0.326 -1.626582 .5403441
1.industry19 | -2.423622 1.149518 -2.11 0.035 -4.676636 -.170607
1.industry20 | 0 (empty)
1.industry21 | 0 (empty)
1.industry22 | -.0897377 .625813 -0.14 0.886 -1.316309 1.136833
0.industry23 | 0 (omitted)
0.industry24 | 0 (omitted)
1.industry25 | -1.234702 .7981118 -1.55 0.122 -2.798972 .3295683
1.industry26 | 0 (omitted)
1.narea1 | -1.488357 .2490815 -5.98 0.000 -1.976547 -1.000166
1.narea2 | 0 (omitted)
_cons | -3.622716 1.116436 -3.24 0.001 -5.810892 -1.434541
------------------------------------------------------------------------------
. est stor m1
. outreg2 [m1] using shift,dec(4) word replace
shift.rtf
dir : seeout
.
. margins, dydx(*)
(note: continuous option implied because a factor with only one level was specified in the dydx() option)
Warning: prediction constant over observations.
missing predicted values encountered within the estimation sample


雷达卡




京公网安备 11010802022788号







