楼主: yzjm_xixi
553 0

[一般统计问题] 欢乐系统斯塔塔2 [推广有奖]

  • 1关注
  • 4粉丝

高中生

52%

还不是VIP/贵宾

-

威望
0
论坛币
0 个
通用积分
296.1237
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
170 点
帖子
15
精华
0
在线时间
6 小时
注册时间
2022-1-6
最后登录
2022-6-7

楼主
yzjm_xixi 发表于 2022-1-7 18:23:55 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

3. Many consumer groups feel that the U.S. Food and Drug Administration (FDA) drug approvalprocess is too easy and, as a  result, too many drugs are approvedthat are later found to be unsafe. On the other hand, a numberof industry lobbyists have  pushed for amore lenient approval process so that pharmaceutical companies canget new drugs approved more easilyand  
quickly. Consider a nullhypothesis that a new, unapproveddrug is unsafe and an alternativehypothesis that a new,  
unapproved drug is safe. (8%)  

a. Explain the risks of committinga Type I or Type II error.

b. Which type of error are the consumer groups trying to avoid?Explain.  

c. Which typeof error are the industry lobbyiststrying to avoid? Explain.                                                                                                                                       

考点:第9-假设检验-单样本检验,基础概念。(8分)

读题:

零假设H0: 未经批准的新药是不安全的 & 备择假设H1:未经批准的新药是安全的。

SOLUTION

a.    (见书9.1)

a)      A Type I error occurs ifyou reject the null hypothesis, H0 (that a new, unapproved drug is unsafe),when it is true and should not be rejected. A Type I error is a “false alarm.”The probability of a Type I error occurring is α.

b)      A Type II error occurs ifyou do not reject the null hypothesis, H0 (that a new, unapproved drug isunsafe), when it is false and should be rejected. A Type II error represents a“missed opportunity” to take some corrective action. The probability of a TypeII error occurring is β.

b.    The consumer groups are trying toavoid is Type I error. Since as a consumer, you always want to take drugs thatare tested and proved safe. Incorrectly reject H0 when it is true (Type Ierror) would make yourself suffer from increased risk and/or danger.

c.     The industry lobbyists are trying to avoid is Type II error. Since asindustry lobbyists, you expect that new drugs can be on sale and make profits.Unsuccessfully reject H0 when it is false (Type II error) would enlarge yourcosts.


4. The file contains the life (in hours) of a sample of 40 100-watt light bulbs producedby Manufacturer A and asample of 40  100-watt light bulbs produced by Manufacturer B. The followingtable shows these dataas a pair of ordered arrays: (8%)

                              

a. Construct afrequency distribution and a percentage distributionfor each manufacturer, using thefollowing class intervalwidths for each distribution:  

Manufacturer A: 650 but lessthan 750, 750 but less than 850, andso on.  起点:650,组间距:100
Manufacturer B: 750 but less than 850, 850 but less than 950, andso on.  起点:750,组间距:100

b. Construct cumulative percentage distributions. 要求123…   

c. Which bulbs have a longerlife—thosefrom Manufacturer A or Manufacturer B? Explain.  

.22 (a) Bulb Life Percentage, Percentage,

(hrs) Mfgr A Mfgr B

650–749 7.5% 0.0%

750–849 12.5 5.0

850–949 50.0 20.0

950–1,049 22.5 40.0

1,050–1,149 7.5 22.5

1,150–1,249 0.0 12.5

(b) Percentage Less Percentage Less

% Less Than Than, Mfgr A Than, Mfgr B

750 7.5% 0.0%

850 20.0 5.0

950 70.0 25.0

1,050 92.5 65.0

1,150 100.0 87.5

1,250 100.0 100.0

(c) Manufacturer B produces bulbs with longer lives than Manufacturer A.

The cumulative percentage for Manufacturer B shows that 65% of its

bulbs lasted less than 1,050 hours, contrasted with 92.5% of Manufacturer

A’s bulbs. None of Manufacturer A’s bulbs lasted at least 1,150 hours, but

12.5% of Manufacturer B’s bulbs lasted at least 1,150 hours. At the same

time, 7.5% of Manufacturer A’s bulbs lasted less than 750 hours, whereas

none of Manufacturer B’s bulbs lasted less than 750 hours.

                                                           

考点:作图;第8-置信区间估计(8分)

SOLUTION

a.     绘制直方图

b.     绘制累计分布图

c.    两样本的均值检验:进行均值的t非配对检验

  

Items

  

Obs

Frequency

[650,750]

684,697,720

3

[750,850]

  

Items

  

Obs

Frequency

Percent

[650,750]

684,697,720

3

3/40

[750,850]

  

Items

  

Obs

Percent

cumulative percentage

[650,750]

684,697,720

3/40

3/40

[750,850]

x

3/40+x

y

3/40+x+y

z

3/40+x+y+…+z=100%

Total 合计

空着

100%


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Manufacturer distribution Successfully MANUFACTURE Probability

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2026-1-4 07:10