摘要翻译:
我们证明了只有当一个加权齐次复曲面的两个最低权值相等时,它才是度量锥的(即bi-Lipschitz等价于度量锥)。我们还给出了一对加权齐次复曲面奇点拓扑等价但不是bi-Lipschitz等价的例子。
---
英文标题:
《Bi-Lipschitz geometry of weighted homogeneous surface singularities》
---
作者:
Lev Birbrair, Alexandre Fernandes, Walter D. Neumann
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Geometric Topology 几何拓扑
分类描述:Manifolds, orbifolds, polyhedra, cell complexes, foliations, geometric structures
流形,轨道,多面体,细胞复合体,叶状,几何结构
--
一级分类:Mathematics 数学
二级分类:Metric Geometry 度量几何学
分类描述:Euclidean, hyperbolic, discrete, convex, coarse geometry, comparisons in Riemannian geometry, symmetric spaces
欧氏,双曲,离散,凸,粗几何,黎曼几何的比较,对称空间
--
---
英文摘要:
We show that a weighted homogeneous complex surface singularity is metrically conical (i.e., bi-Lipschitz equivalent to a metric cone) only if its two lowest weights are equal. We also give an example of a pair of weighted homogeneous complex surface singularities that are topologically equivalent but not bi-Lipschitz equivalent.
---
PDF链接:
https://arxiv.org/pdf/0704.2041


雷达卡



京公网安备 11010802022788号







