摘要翻译:
本文提出了一种基于多传感器融合的道路匹配方法,该方法旨在支持高级驾驶辅助系统中的实时导航特征。管理多假设是解决道路匹配问题的一种有效策略。利用动态贝叶斯网络实现了多传感器融合和多模态估计。利用ABS传感器、差分全球定位系统(GPS)接收机和精确的数字路线图数据进行的实验结果表明了该方法的性能,特别是在模糊情况下。
---
英文标题:
《Multi-Sensor Fusion Method using Dynamic Bayesian Network for Precise
Vehicle Localization and Road Matching》
---
作者:
Cherif Smaili (INRIA Lorraine - LORIA), Maan El Badaoui El Najjar
(INRIA Lorraine - LORIA), Fran\c{c}ois Charpillet (INRIA Lorraine - LORIA)
---
最新提交年份:
2007
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Robotics 机器人学
分类描述:Roughly includes material in ACM Subject Class I.2.9.
大致包括ACM科目I.2.9类的材料。
--
---
英文摘要:
This paper presents a multi-sensor fusion strategy for a novel road-matching method designed to support real-time navigational features within advanced driving-assistance systems. Managing multihypotheses is a useful strategy for the road-matching problem. The multi-sensor fusion and multi-modal estimation are realized using Dynamical Bayesian Network. Experimental results, using data from Antilock Braking System (ABS) sensors, a differential Global Positioning System (GPS) receiver and an accurate digital roadmap, illustrate the performances of this approach, especially in ambiguous situations.
---
PDF链接:
https://arxiv.org/pdf/0709.1099