《Stock Trading Using PE ratio: A Dynamic Bayesian Network Modeling on
Behavioral Finance and Fundamental Investment》
---
作者:
Haizhen Wang, Ratthachat Chatpatanasiri, Pairote Sattayatham
---
最新提交年份:
2017
---
英文摘要:
On a daily investment decision in a security market, the price earnings (PE) ratio is one of the most widely applied methods being used as a firm valuation tool by investment experts. Unfortunately, recent academic developments in financial econometrics and machine learning rarely look at this tool. In practice, fundamental PE ratios are often estimated only by subjective expert opinions. The purpose of this research is to formalize a process of fundamental PE estimation by employing advanced dynamic Bayesian network (DBN) methodology. The estimated PE ratio from our model can be used either as a information support for an expert to make investment decisions, or as an automatic trading system illustrated in experiments. Forward-backward inference and EM parameter estimation algorithms are derived with respect to the proposed DBN structure. Unlike existing works in literatures, the economic interpretation of our DBN model is well-justified by behavioral finance evidences of volatility. A simple but practical trading strategy is invented based on the result of Bayesian inference. Extensive experiments show that our trading strategy equipped with the inferenced PE ratios consistently outperforms standard investment benchmarks.
---
中文摘要:
在证券市场的日常投资决策中,市盈率是投资专家作为公司估值工具使用最广泛的方法之一。不幸的是,金融计量学和机器学习领域最近的学术发展很少关注这个工具。在实践中,基本市盈率通常仅由主观专家意见进行估计。本研究的目的是通过采用先进的动态贝叶斯网络(DBN)方法,将基本PE估计过程形式化。从我们的模型中估计出的市盈率既可以作为专家做出投资决策的信息支持,也可以作为实验中说明的自动交易系统。针对所提出的DBN结构,推导了前向后推理和EM参数估计算法。与现有文献中的工作不同,DBN模型的经济学解释得到了波动性行为金融学证据的充分证明。基于贝叶斯推理的结果,提出了一种简单实用的交易策略。大量实验表明,我们的交易策略配备了推断的市盈率,始终优于标准投资基准。
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Computational Engineering, Finance, and Science 计算工程、金融和科学
分类描述:Covers applications of computer science to the mathematical modeling of complex systems in the fields of science, engineering, and finance. Papers here are interdisciplinary and applications-oriented, focusing on techniques and tools that enable challenging computational simulations to be performed, for which the use of supercomputers or distributed computing platforms is often required. Includes material in ACM Subject Classes J.2, J.3, and J.4 (economics).
涵盖了计算机科学在科学、工程和金融领域复杂系统的数学建模中的应用。这里的论文是跨学科和面向应用的,集中在技术和工具,使挑战性的计算模拟能够执行,其中往往需要使用超级计算机或分布式计算平台。包括ACM学科课程J.2、J.3和J.4(经济学)中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning 机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Quantitative Finance 数量金融学
二级分类:General Finance 一般财务
分类描述:Development of general quantitative methodologies with applications in finance
通用定量方法的发展及其在金融中的应用
--
---
PDF下载:
-->
Stock_Trading_Using_PE_ratio:_A_Dynamic_Bayesian_Network_Modeling_on_Behavioral_.pdf
(828.69 KB)


雷达卡



京公网安备 11010802022788号







