摘要翻译:
不可约实四次曲线有十三类奇点,可约实四次曲线有十七类奇点。这种分类最初是由于D.A.古德科夫。不可约复四次曲线有九类奇点,可约复四次曲线有十类奇点。我们利用计算机代数系统Maple给出了完整的分类和证明。我们阐明了分类是基于计算足够的Puiseux展开来分离分支的。因此,证明由一系列可以用Maple很好地完成的大型符号计算组成。
---
英文标题:
《Singular points of real quartic curves via computer algebra》
---
作者:
David A. Weinberg (Texas Tech University), Nicholas J. Willis
(Whitworth College)
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
There are thirteen types of singular points for irreducible real quartic curves and seventeen types of singular points for reducible real quartic curves. This classification is originally due to D.A. Gudkov. There are nine types of singular points for irreducible complex quartic curves and ten types of singular points for reducible complex quartic curves. We derive the complete classification with proof by using the computer algebra system Maple. We clarify that the classification is based on computing just enough of the Puiseux expansion to separate the branches. Thus, the proof consists of a sequence of large symbolic computations that can be done nicely using Maple.
---
PDF链接:
https://arxiv.org/pdf/0707.0241