摘要翻译:
本文研究了p^3上正规秩2向量丛E的第一上同调模上迫使E分裂的消失条件,并由此找到了非分裂丛的非消失策略能级。该条件改进了文献中已知的其他条件,并通过对欧拉特征函数的简单计算得到,避免了特殊引理、Barth约束定理、判别性质等繁重的工具。
---
英文标题:
《Non-vanishing theorems for rank 2 bundles on P^3: a simple approach
without the speciality lemma》
---
作者:
Paolo Valabrega, Mario Valenzano
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
The paper investigates vanishing conditions on the first cohomology module of a normalized rank 2 vector bundle E on P^3 which force E to split, and finds therefore strategic levels of non-vanishing for a non-split bundle. The present conditions improve other conditions known in the literature and are obtained with simple computations on the Euler characteristic function, avoiding the speciality lemma, Barth's restriction theorem, the discriminat property, and other heavy tools.
---
PDF链接:
https://arxiv.org/pdf/0710.2242


雷达卡



京公网安备 11010802022788号







