摘要翻译:
本文借鉴自适应免疫系统的交叉调节模型,提出了一种新的垃圾邮件检测方法。我们报告了一个初步算法在六个电子邮件语料库上的测试。我们还将我们的结果静态和动态地与朴素贝叶斯分类器和我们以前为生物医学文本挖掘应用开发的另一种二元分类方法的结果进行了比较。我们证明了交叉规则模型与其他模型相比是有竞争力的,因此很有希望作为一种生物启发的垃圾邮件检测算法,特别是在一般情况下的二元分类算法。
---
英文标题:
《Adaptive Spam Detection Inspired by a Cross-Regulation Model of Immune
Dynamics: A Study of Concept Drift》
---
作者:
Alaa Abi-Haidar and Luis M. Rocha
---
最新提交年份:
2008
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Information Retrieval 信息检索
分类描述:Covers indexing, dictionaries, retrieval, content and analysis. Roughly includes material in ACM Subject Classes H.3.0, H.3.1, H.3.2, H.3.3, and H.3.4.
涵盖索引,字典,检索,内容和分析。大致包括ACM主题课程H.3.0、H.3.1、H.3.2、H.3.3和H.3.4中的材料。
--
一级分类:Physics 物理学
二级分类:Adaptation and Self-Organizing Systems 自适应和自组织系统
分类描述:Adaptation, self-organizing systems, statistical physics, fluctuating systems, stochastic processes, interacting particle systems, machine learning
自适应,自组织系统,统计物理,波动系统,随机过程,相互作用粒子系统,机器学习
--
---
英文摘要:
This paper proposes a novel solution to spam detection inspired by a model of the adaptive immune system known as the crossregulation model. We report on the testing of a preliminary algorithm on six e-mail corpora. We also compare our results statically and dynamically with those obtained by the Naive Bayes classifier and another binary classification method we developed previously for biomedical text-mining applications. We show that the cross-regulation model is competitive against those and thus promising as a bio-inspired algorithm for spam detection in particular, and binary classification in general.
---
PDF链接:
https://arxiv.org/pdf/0812.1014


雷达卡



京公网安备 11010802022788号







