摘要翻译:
确定给定生物数据的进化史是生物科学中的一项重要任务。给定一组类群上的一组四重奏拓扑,最大四重奏一致性(MQC)问题包括计算满足最大四重奏数目的全局系统发生。针对MQC问题已经提出了许多解决方案,包括动态规划、约束规划,以及最近提出的答案集规划(ASP)。ASP是目前最有效的解决MQC问题的方法。本文提出了用伪布尔(PB)约束对MQC问题进行编码。PB的使用允许用高效的PB求解器解决MQC问题,也允许考虑MQC问题的不同建模方法。初步结果是有希望的,并表明PB可以是解决MQC问题的一个有效的替代方案。
---
英文标题:
《A Pseudo-Boolean Solution to the Maximum Quartet Consistency Problem》
---
作者:
Antonio Morgado, Joao Marques-Silva
---
最新提交年份:
2008
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Logic in Computer Science 计算机科学中的逻辑
分类描述:Covers all aspects of logic in computer science, including finite model theory, logics of programs, modal logic, and program verification. Programming language semantics should have Programming Languages as the primary subject area. Roughly includes material in ACM Subject Classes D.2.4, F.3.1, F.4.0, F.4.1, and F.4.2; some material in F.4.3 (formal languages) may also be appropriate here, although Computational Complexity is typically the more appropriate subject area.
涵盖计算机科学中逻辑的所有方面,包括有限模型理论,程序逻辑,模态逻辑和程序验证。程序设计语言语义学应该把程序设计语言作为主要的学科领域。大致包括ACM学科类D.2.4、F.3.1、F.4.0、F.4.1和F.4.2中的材料;F.4.3(形式语言)中的一些材料在这里也可能是合适的,尽管计算复杂性通常是更合适的主题领域。
--
---
英文摘要:
Determining the evolutionary history of a given biological data is an important task in biological sciences. Given a set of quartet topologies over a set of taxa, the Maximum Quartet Consistency (MQC) problem consists of computing a global phylogeny that satisfies the maximum number of quartets. A number of solutions have been proposed for the MQC problem, including Dynamic Programming, Constraint Programming, and more recently Answer Set Programming (ASP). ASP is currently the most efficient approach for optimally solving the MQC problem. This paper proposes encoding the MQC problem with pseudo-Boolean (PB) constraints. The use of PB allows solving the MQC problem with efficient PB solvers, and also allows considering different modeling approaches for the MQC problem. Initial results are promising, and suggest that PB can be an effective alternative for solving the MQC problem.
---
PDF链接:
https://arxiv.org/pdf/0805.0202


雷达卡



京公网安备 11010802022788号







