楼主: kedemingshi
193 0

[经济学] 现实定价下买家行为的在线学习算法 限制条件 [推广有奖]

  • 0关注
  • 4粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
15 个
通用积分
87.4399
学术水平
0 点
热心指数
8 点
信用等级
0 点
经验
24714 点
帖子
4141
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
kedemingshi 在职认证  发表于 2022-3-4 08:48:30 来自手机 |只看作者 |坛友微信交流群|倒序 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
我们提出了一种新的有效的在线算法来学习控制效用最大化的购买者在重复交互环境中的购买行为的参数,该购买者对价格做出响应。我们的算法的关键特点是,它可以学习甚至非线性的买方效用,而工作的任意价格约束,卖方可能施加。这克服了以前方法的一个主要缺点,即使用不切实际的价格来学习这些参数,使它们在实践中不适合。
---
英文标题:
《An Online Algorithm for Learning Buyer Behavior under Realistic Pricing
  Restrictions》
---
作者:
Debjyoti Saharoy and Theja Tulabandhula
---
最新提交年份:
2018
---
分类信息:

一级分类:Statistics        统计学
二级分类:Machine Learning        机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
一级分类:Computer Science        计算机科学
二级分类:Machine Learning        机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Economics        经济学
二级分类:Econometrics        计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Mathematics        数学
二级分类:Optimization and Control        优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--

---
英文摘要:
  We propose a new efficient online algorithm to learn the parameters governing the purchasing behavior of a utility maximizing buyer, who responds to prices, in a repeated interaction setting. The key feature of our algorithm is that it can learn even non-linear buyer utility while working with arbitrary price constraints that the seller may impose. This overcomes a major shortcoming of previous approaches, which use unrealistic prices to learn these parameters making them unsuitable in practice.
---
PDF链接:
https://arxiv.org/pdf/1803.01968
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:限制条件 在线学习 学习算法 econometrics Optimization 在实践中 响应 克服 Learning Algorithm

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加JingGuanBbs
拉您进交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-11-10 06:27