摘要翻译:
在此,我们提出了一种基于减除协方差的方法,我们称之为减除互相关分析(DXA),来研究不同同时记录的时间序列之间存在非平稳性时的幂律互相关。我们从物理学、生理学和金融学中选取实例来说明该方法。
---
英文标题:
《Detrended Cross-Correlation Analysis: A New Method for Analyzing Two
Non-stationary Time Series》
---
作者:
Boris Podobnik, H. Eugene Stanley
---
最新提交年份:
2007
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
Here we propose a method, based on detrended covariance which we call detrended cross-correlation analysis (DXA), to investigate power-law cross-correlations between different simultaneously-recorded time series in the presence of non-stationarity. We illustrate the method by selected examples from physics, physiology, and finance.
---
PDF链接:
https://arxiv.org/pdf/0709.0281


雷达卡



京公网安备 11010802022788号







